- 全栈工程师必备开发利器
东风牧野
全栈开发技术网络全栈开发工具
一、团队协作工具团队协作软件Teambition:团队协作工具创导者有道云协作:企业知识管理与协作平台tower:深受用户喜爱的团队协作工具笔记备忘印象笔记:工作必备效率应用有道云笔记:网易出品,获得5000万用户青睐的笔记软件。提供了PC端、移动端、网页端等多端应用,用户可以随时随地对线上资料进行编辑、分享以及协同。日事清:怕工作进度延误就用日事清滴答清单:一个帮你高效完成任务和规划时间的应用远
- 【tower】Rust tower库原理详解以及axum限流实战
景天科技苑
Rust语言通关之路rust开发语言后端towerrusttoweraxum限流
✨✨欢迎大家来到景天科技苑✨✨养成好习惯,先赞后看哦~作者简介:景天科技苑《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。《博客》:Rust开发,Python全栈,Golang开发,云原生开发,PyQt5和Tkinter桌面开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django
- 伽玛函数的对数导数 matlab,伽玛函数(Γ(x)伽马函数公式)
蓝洱
伽玛函数的对数导数matlab
相信很多人对于伽玛函数(Γ(x)伽马函数公式)并不是非常的了解,因此小编在这里为您详解的讲解一下相关信息!Γ(x)称为伽马函数,它是用一个积分式定义的,不是初等函数。伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n!如何通过分部积分法推导伽马函数:F(x+1)=xF(X)??伽玛函数(Gamma函数),也叫欧拉第二积分,是阶乘函数在实数与复
- 双塔模型(Two-Tower Model)推荐系统实践
双塔模型双塔模型(Two-TowerModel)是一种常用的推荐系统或搜索排序模型架构,由两个独立的神经网络(即“双塔”)组成,分别处理用户和物品的特征,最后通过相似度计算(如点积、余弦相似度)得到匹配分数。Rust因其高性能和安全性,适合实现此类模型。双塔模型的定义双塔模型(Dual-TowerModel)是一种深度学习架构,由两个独立的神经网络塔(Tower)组成,分别处理不同的输入数据,最后
- 筛法求欧拉函数
月亮很亮
算法算法
欧拉函数欧拉函数的定义在1∼n1\simn1∼n中与n互质的数的个数为欧拉函数,记为φ(n)\varphi(n)φ(n)比如φ(1)\varphi(1)φ(1)=1,φ(2)\varphi(2)φ(2)=1,φ(10)\varphi(10)φ(10)=4欧拉函数的性质如果p是质数,那么φ(p)\varphi(p)φ(p)=p−1p-1p−1如果p是质数,那么φ(pk)\varphi({p^k})φ
- 理解欧拉角:定义、转换与应用
郝学胜-神的一滴
计算机图形学程序人生图形渲染游戏程序
1.引言在三维空间中描述物体的旋转时,欧拉角(EulerAngles)是最直观的方法之一。它通过三个连续的绕轴旋转来表示任意朝向,广泛应用于机器人学、航空航天、计算机图形学等领域。然而,不同的欧拉角定义(如经典欧拉角和泰特-布莱恩欧拉角)以及它们之间的转换关系常常让人困惑。本文将系统介绍欧拉角的定义、旋转矩阵和四元数表示,并详细讲解如何在不同欧拉角之间进行转换。2.欧拉角的定义欧拉角根据旋转轴的选
- 【PTA数据结构 | C语言版】哥尼斯堡的“七桥问题”
秋说
PTA数据结构题目集数据结构c语言算法
本专栏持续输出数据结构题目集,欢迎订阅。文章目录题目代码题目哥尼斯堡是位于普累格河上的一座城市,它包含两个岛屿及连接它们的七座桥,如下图所示。可否走过这样的七座桥,而且每桥只走过一次?瑞士数学家欧拉(LeonhardEuler,1707—1783)最终解决了这个问题,并由此创立了拓扑学。这个问题如今可以描述为判断欧拉回路是否存在的问题。欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到
- 使用QMI8658六轴原始数据融合输出欧拉角笔记
关于四元素和三维旋转的知识,推荐看一下https://github.com/Krasjet/quaternion。qmi8658六轴姿态传感器的原始数据读取函数如下。需要注意的是,陀螺仪数据的格式。voidQmi8658_read_acc_xyz(floatacc_xyz[3]){unsignedcharbuf_reg[6];shortraw_acc_xyz[3];Qmi8658_read_reg
- lanqiaoOJ 4330:欧拉函数模板
hnjzsyjyj
信息学竞赛#算法数学基础欧拉函数
【题目来源】https://www.lanqiao.cn/problems/4330/learning/【问题描述】这是一道模板题。首先给出欧拉函数的定义:即φ(n)表示的是小于等于n的数中和n互质的数的个数。比如说φ(6)=2,当n是质数的时候,显然有φ(n)=n-1。【题目大意】给定n个正整数,请你求出每个数的欧拉函数。【输入格式】输入共两行。第一行输入一个整数表示n。第二行输入n个整数。【输
- 高中生就能看懂的群论
dllglvzhenfeng
科普创新信息技术北京大学数学英才班清华大学数学英才班东南大学少年班西湖大学创新班西安交大少年班TACA0测试
高中生就能看懂的群论,如何从对称性构建出群,群论01:什么是群高中生就能看懂的群论,如何从对称性构建出群,群论01:什么是群_哔哩哔哩_bilibili如何解剖一个群?对称中还能有对称?群论02子群与商群如何解剖一个群?对称中还能有对称?群论02子群与商群_哔哩哔哩_bilibili怎样优雅地看待欧拉公式,复指数与旋转的奥秘,群论03:循环与欧拉公式怎样优雅地看待欧拉公式,复指数与旋转的奥秘,群论
- 华为欧拉系统(openEuler)安装 Docker 容器完整教程
铭keny
eureka云原生
前言:在国产化操作系统日益普及的当下,华为欧拉系统(openEuler)凭借其稳定性和安全性受到不少用户青睐。但Docker官方暂未提供对openEuler的原生支持,不过好在openEuler与CentOS底层架构兼容,我们可以通过适配CentOS的安装源来实现Docker部署。本文基于openEuler22.03LTS版本实测,详细讲解安装全过程。一、安装前的准备工作确认系统版本首先确保你的系
- YOLO11 目标检测从安装到实战
前言YOLO(YouOnlyLookOnce)系列是目标检测领域的经典算法,凭借速度快、精度高的特点被广泛应用。最新的YOLO11在模型结构和性能上进一步优化,本文将从环境搭建到实战应用,详细讲解YOLO11的使用方法,适合新手快速上手。一、环境准备1.系统要求操作系统:Windows10/11、Ubuntu20.04+、欧拉系统等硬件:CPU可运行,GPU(NVIDIA)可加速(推荐,需支持CU
- 揭秘华为欧拉:不只是操作系统,更是云时代的技能认证体系
揭秘华为欧拉:不只是操作系统,更是云时代的技能认证体系作为一名深耕IT培训领域的博主,今天带大家客观认识“华为欧拉”——这个在云计算领域频频出现的名词。一、华为欧拉究竟是什么?严格来说,“华为欧拉”核心包含两部分1.openEuler操作系统:一个由华为支持的企业级开源Linux操作系统发行版,专为云计算、云原生平台等场景设计优化。2.华为openEuler认证体系(HCIA/HCIP/HCIE-
- 万向节死锁公式推导
微小冷
机器人欧拉角旋转矩阵万向节万向节死锁旋转轴旋转
文章目录欧拉角的万向节死锁旋转轴欧拉角的万向节死锁如果把刚体的旋转沿着三个旋转轴进行拆分,那么可以变成三个旋转角的叠加,这三个旋转角就是欧拉角,分别对应旋转矩阵,为了书写方便,记Sθ=sinθ,Cθ=cosθS_\theta=\sin\theta,C_\theta=\cos\thetaSθ=sinθ,Cθ=cosθ,则三个旋转矩阵为Rx(θ)R_x(\theta)Rx(θ)Ry(θ)R_y(\
- [OC]C++计算e(自然常数)
OC溥哥999
C++懒人套餐算法开发语言c++
自然常数,符号e,为数学中一个常数,是一个无限不循环小数,且为超越数,其值约为2.718281828459045。它是自然对数函数的底数。有时称它为欧拉数(Eulernumber),以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔(JohnNapier)引进对数。它就像圆周率π和虚数单位i,是数学中最重要的常数之一。摘自秒懂百科计算方式一:e=1/0!+1/1!+
- 数据结构:递归:汉诺塔问题(Tower of Hanoi)
95号闪电麦坤
数据结构数据结构
目录问题描述第一性原理分析代码实现第一步:明确函数要干什么第二步:写好递归的“结束条件”第三步:写递归步骤递归调用树问题描述有三个柱子(A,B,C),上面有n个大小不等的圆盘,最开始所有圆盘按从大到小顺序堆在柱子A上。目标:将所有圆盘移动到柱子C,移动时要满足:一次只能移动一个盘子;任何时刻小盘子不能压在大盘子上。❓核心问题:如何将n个盘子从A移动到C,同时只用B做辅助,且不违反约束?第一性原理分
- matlab 欧拉角转四元数
点云侠
matlab与合成孔径雷达matlab开发语言算法
目录一、概述一、概述1、计算原理2、实现步骤3、主要函数三、代码实现四、结果展示一、概述目录一、概述一、概述1、计算原理2、实现步骤3、主要函数三、代码实现四、结果展示一、概述 将欧拉角转换为四元数是计算机图形学、机器人学和物理仿真中常见的任务。欧拉角通过一系列的角度描述物体在空间中的旋转,而四元数则提供了一种更加简洁和稳定的方式来实现旋转表示。设欧拉角为(α,β,γ)(\alpha,\beta
- 【网络安全】网络安全中的离散数学
flyair_China
安全架构
一、离散数学核心知识点与网络安全映射1.数论(NumberTheory)知识点安全应用场景实例说明质因数分解RSA公钥加密大整数分解难题(2048位密钥需数万年破解)模运算Diffie-Hellman密钥交换利用(gamodp)实现安全协商欧拉定理RSA加密/解密me*d≡m(modn)保障解密还原中国剩余定理高效解密优化RSA-CRT加速解密运算达70%2.代数结构(AlgebraicStruc
- 基于Matlab的四旋翼无人机动力学PID控制仿真,具体内容包括:
资深码侬
matlab无人机开发语言
基于Matlab的四旋翼无人机动力学PID控制仿真,具体内容包括:运用欧拉方程对地面坐标到机体坐标的转换矩阵进行了推导在无人机动力学模型基础上,采用经典PID控制算法对其内环姿态和外环位置进行控制说明文档:①详细推导四旋翼飞行器的数学模型②PID控制器的设计、位置回路控制器设计、姿态回路控制器设计③PID参数调整④仿真结果分析98文章目录**1.四旋翼飞行器的数学模型****旋转矩阵推导****2
- leetcode332.重新安排行程:优先队列与DFS实现欧拉路径的行程规划
Musennn
leetcode刷题详解深度优先算法leetcodejava
一、题目深度解析与行程规划本质题目描述给定一个机票的字符串二维数组tickets,每个元素是[from,to]的形式,表示从from到to的机票。要求找出从JFK出发的行程,且必须使用所有机票,若存在多种可能的行程,返回字典序最小的那个。核心特性分析图论模型:每个机场是图的节点,机票是图的边,问题转化为在图中寻找一条经过所有边的路径欧拉路径:题目本质是寻找图中的欧拉路径(经过每条边恰好一次的路径)
- 如何查看BNO055的模式
qqqweiweiqq
自动驾驶导航小车(ROSLidar)笔记
很好,我们现在结合你提供的信息,来具体判断你BNO055刚开机时yaw=26°是相对于谁的夹角。✅前提信息总结(从你说的得出):你使用的是BNO055传感器你读取了/imu/data话题,并用tf.transformations.euler_from_quaternion转换为了欧拉角刚开机yaw就是约26°你还未明确告诉我你是否设置为NDOF模式或是否完成磁力计校准判断:yaw=26°是谁和谁的
- 物理学中的群论:三维空间转动变换
AI天才研究院
AI大模型企业级应用开发实战Agent实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
物理学中的群论:三维空间转动变换1.背景介绍1.1问题的由来在物理学领域,特别是量子力学和相对论中,研究物体在空间中的运动是至关重要的。物体的位置、速度以及更深层次的内在性质都受到物理定律的严格规范。当讨论物体的旋转运动时,数学描述变得尤为重要。在三维空间中,物体的旋转可以通过一组称为“旋转矩阵”或者“欧拉角”的方式来精确描述。这些描述方式不仅在理论物理学中不可或缺,也是计算机图形学、机器人学、航
- PCL 欧拉角转轴角
点云侠
CloudCompare算法计算机视觉开发语言人工智能c++
目录一、算法原理二、代码实现三、结果展示一、算法原理 轴角表示法使用旋转轴u=(ux,uy,uz)\mathbf{u}=(u_x,u_y,u_z)u=(ux,uy,uz)和旋转角θ\thetaθ描述旋转。欧拉角转轴角的核心思想是:将三个欧拉旋转等效为绕单一轴的旋转。推导步骤:欧拉角→旋转矩阵:给定欧拉角(α,β,γ)(\alpha,\beta,\gamma)(α,β,γ)(Z-Y-X顺序),旋转
- 【AIGC专栏】StableDiffusion的WebUI界面-生成图片效果
雾岛心情
AIGC内容创作AIGCstablediffusion
迭代步数用于计算图像的迭代结果,通常来说迭代步数越多,细节越多,渲染越慢。迭代步数越少,细节越少,渲染速度越快。这里的迭代步数为1,则会出现一团模糊,迭代步数太高,越清楚。采样器种类非常多,但是多半情况下也是如下大类:带a的类型采样比较随机,关键词识别率比较低Karras去噪速度比较快Euler采样器:欧拉采样方法。Heun采样器:欧拉的一个更准确但是较慢的版本。LMS采样器:线性多步法,与欧拉采
- 经典数学公式可视化工具1.0
辣香牛肉面
工具类数学公式可视化
概述经典数学公式可视化工具1.0是一款旨在通过图形化界面和动态交互帮助用户直观理解经典数学公式。软件以可视化方式展示公式的图形表现,并提供鼠标拖动、键盘控制等交互功能,适合学生、教师以及对数学和物理感兴趣的用户。软件支持14个经典公式(未来会增加更多有代表性的公式)包括:l麦克斯韦方程组l欧拉公式l牛顿第二定律l勾股定理l质能方程(E=mc²)l薛定谔方程l1+1=2l德布罗意关系l傅里叶变换(方
- 如何计算复指数 $i^{-2i}$
士兵突击许三多
matlab基础matlab
如何计算复指数i−2ii^{-2i}i−2i复指数计算是复分析中的一个重要内容。下面我们详细解析i−2ii^{-2i}i−2i的计算方法。关键步骤表达复数iii的指数形式根据欧拉公式,复数iii可以表示为:i=eiπ2i=e^{i\frac{\pi}{2}}i=ei2π应用对数恒等式对于任意复数z≠0z\neq0z=0和www,复指数的定义为:zw=ewlnzz^w=e^{w\lnz}zw=e
- 欧拉公式:连接数学与物理多领域的核心纽带
进一步有进一步的欢喜
信号处理数学原理推荐系统欧拉公式
欧拉公式:数学与物理世界的桥梁摘要欧拉公式eiθ=cosθ+isinθe^{i\theta}=\cos\theta+i\sin\theta
- STM32G4 TIM1触发ADC转换
perseverance52
stm32ADC注入
STM32G4TIM1触发ADC转换相关篇《HALSTM32G4+ADC手动触发采集+各种滤波算法实现》《HALSTM32G4+TIM13路PWM互补输出+VOFA波形演示》《HALSTM32G4内部运放的使用》✨继欧拉电子无刷电机驱动相关视频学习–STM32G4FOC开发实战—TIM1ADCCOMPDAC级联STM32G4FOC开发实战—TIM1ADCCOMPDAC级联相对应的文章:https:
- 欧拉降幂(JAVA)蓝桥杯乘积幂次
俺不是西瓜太郎´•ﻌ•`
蓝桥杯java蓝桥杯开发语言
这个题可以使用欧拉降幂,1000000007是质数,所以欧拉函数值为1000000006.importjava.util.Scanner;//1:无需package//2:类名必须Main,不可修改publicclassMain{publicstaticvoidmain(String[]args){Scannerscanner=newScanner(System.in);//输入longn=sca
- 欧拉系统安装,配置静态ip
zzxxlty
tcp/ip服务器网络协议
选择安装server版本配置静态ipipaddr查看网口,假设网口为ens192vi/etc/sysconfig/network-scripts/ifcfgxxx修改dhcp为static,ip地址,netmask,gateway,dns改完后nmcliconnectionreloadnmcliconnectionupens192systemctlrestartNetworkManageripad
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。