- 伽玛函数的对数导数 matlab,伽玛函数(Γ(x)伽马函数公式)
蓝洱
伽玛函数的对数导数matlab
相信很多人对于伽玛函数(Γ(x)伽马函数公式)并不是非常的了解,因此小编在这里为您详解的讲解一下相关信息!Γ(x)称为伽马函数,它是用一个积分式定义的,不是初等函数。伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n!如何通过分部积分法推导伽马函数:F(x+1)=xF(X)??伽玛函数(Gamma函数),也叫欧拉第二积分,是阶乘函数在实数与复
- 筛法求欧拉函数
月亮很亮
算法算法
欧拉函数欧拉函数的定义在1∼n1\simn1∼n中与n互质的数的个数为欧拉函数,记为φ(n)\varphi(n)φ(n)比如φ(1)\varphi(1)φ(1)=1,φ(2)\varphi(2)φ(2)=1,φ(10)\varphi(10)φ(10)=4欧拉函数的性质如果p是质数,那么φ(p)\varphi(p)φ(p)=p−1p-1p−1如果p是质数,那么φ(pk)\varphi({p^k})φ
- 理解欧拉角:定义、转换与应用
郝学胜-神的一滴
计算机图形学程序人生图形渲染游戏程序
1.引言在三维空间中描述物体的旋转时,欧拉角(EulerAngles)是最直观的方法之一。它通过三个连续的绕轴旋转来表示任意朝向,广泛应用于机器人学、航空航天、计算机图形学等领域。然而,不同的欧拉角定义(如经典欧拉角和泰特-布莱恩欧拉角)以及它们之间的转换关系常常让人困惑。本文将系统介绍欧拉角的定义、旋转矩阵和四元数表示,并详细讲解如何在不同欧拉角之间进行转换。2.欧拉角的定义欧拉角根据旋转轴的选
- 【PTA数据结构 | C语言版】哥尼斯堡的“七桥问题”
秋说
PTA数据结构题目集数据结构c语言算法
本专栏持续输出数据结构题目集,欢迎订阅。文章目录题目代码题目哥尼斯堡是位于普累格河上的一座城市,它包含两个岛屿及连接它们的七座桥,如下图所示。可否走过这样的七座桥,而且每桥只走过一次?瑞士数学家欧拉(LeonhardEuler,1707—1783)最终解决了这个问题,并由此创立了拓扑学。这个问题如今可以描述为判断欧拉回路是否存在的问题。欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到
- 使用QMI8658六轴原始数据融合输出欧拉角笔记
关于四元素和三维旋转的知识,推荐看一下https://github.com/Krasjet/quaternion。qmi8658六轴姿态传感器的原始数据读取函数如下。需要注意的是,陀螺仪数据的格式。voidQmi8658_read_acc_xyz(floatacc_xyz[3]){unsignedcharbuf_reg[6];shortraw_acc_xyz[3];Qmi8658_read_reg
- lanqiaoOJ 4330:欧拉函数模板
hnjzsyjyj
信息学竞赛#算法数学基础欧拉函数
【题目来源】https://www.lanqiao.cn/problems/4330/learning/【问题描述】这是一道模板题。首先给出欧拉函数的定义:即φ(n)表示的是小于等于n的数中和n互质的数的个数。比如说φ(6)=2,当n是质数的时候,显然有φ(n)=n-1。【题目大意】给定n个正整数,请你求出每个数的欧拉函数。【输入格式】输入共两行。第一行输入一个整数表示n。第二行输入n个整数。【输
- 高中生就能看懂的群论
dllglvzhenfeng
科普创新信息技术北京大学数学英才班清华大学数学英才班东南大学少年班西湖大学创新班西安交大少年班TACA0测试
高中生就能看懂的群论,如何从对称性构建出群,群论01:什么是群高中生就能看懂的群论,如何从对称性构建出群,群论01:什么是群_哔哩哔哩_bilibili如何解剖一个群?对称中还能有对称?群论02子群与商群如何解剖一个群?对称中还能有对称?群论02子群与商群_哔哩哔哩_bilibili怎样优雅地看待欧拉公式,复指数与旋转的奥秘,群论03:循环与欧拉公式怎样优雅地看待欧拉公式,复指数与旋转的奥秘,群论
- 华为欧拉系统(openEuler)安装 Docker 容器完整教程
铭keny
eureka云原生
前言:在国产化操作系统日益普及的当下,华为欧拉系统(openEuler)凭借其稳定性和安全性受到不少用户青睐。但Docker官方暂未提供对openEuler的原生支持,不过好在openEuler与CentOS底层架构兼容,我们可以通过适配CentOS的安装源来实现Docker部署。本文基于openEuler22.03LTS版本实测,详细讲解安装全过程。一、安装前的准备工作确认系统版本首先确保你的系
- YOLO11 目标检测从安装到实战
前言YOLO(YouOnlyLookOnce)系列是目标检测领域的经典算法,凭借速度快、精度高的特点被广泛应用。最新的YOLO11在模型结构和性能上进一步优化,本文将从环境搭建到实战应用,详细讲解YOLO11的使用方法,适合新手快速上手。一、环境准备1.系统要求操作系统:Windows10/11、Ubuntu20.04+、欧拉系统等硬件:CPU可运行,GPU(NVIDIA)可加速(推荐,需支持CU
- 揭秘华为欧拉:不只是操作系统,更是云时代的技能认证体系
揭秘华为欧拉:不只是操作系统,更是云时代的技能认证体系作为一名深耕IT培训领域的博主,今天带大家客观认识“华为欧拉”——这个在云计算领域频频出现的名词。一、华为欧拉究竟是什么?严格来说,“华为欧拉”核心包含两部分1.openEuler操作系统:一个由华为支持的企业级开源Linux操作系统发行版,专为云计算、云原生平台等场景设计优化。2.华为openEuler认证体系(HCIA/HCIP/HCIE-
- 万向节死锁公式推导
微小冷
机器人欧拉角旋转矩阵万向节万向节死锁旋转轴旋转
文章目录欧拉角的万向节死锁旋转轴欧拉角的万向节死锁如果把刚体的旋转沿着三个旋转轴进行拆分,那么可以变成三个旋转角的叠加,这三个旋转角就是欧拉角,分别对应旋转矩阵,为了书写方便,记Sθ=sinθ,Cθ=cosθS_\theta=\sin\theta,C_\theta=\cos\thetaSθ=sinθ,Cθ=cosθ,则三个旋转矩阵为Rx(θ)R_x(\theta)Rx(θ)Ry(θ)R_y(\
- [OC]C++计算e(自然常数)
OC溥哥999
C++懒人套餐算法开发语言c++
自然常数,符号e,为数学中一个常数,是一个无限不循环小数,且为超越数,其值约为2.718281828459045。它是自然对数函数的底数。有时称它为欧拉数(Eulernumber),以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔(JohnNapier)引进对数。它就像圆周率π和虚数单位i,是数学中最重要的常数之一。摘自秒懂百科计算方式一:e=1/0!+1/1!+
- matlab 欧拉角转四元数
点云侠
matlab与合成孔径雷达matlab开发语言算法
目录一、概述一、概述1、计算原理2、实现步骤3、主要函数三、代码实现四、结果展示一、概述目录一、概述一、概述1、计算原理2、实现步骤3、主要函数三、代码实现四、结果展示一、概述 将欧拉角转换为四元数是计算机图形学、机器人学和物理仿真中常见的任务。欧拉角通过一系列的角度描述物体在空间中的旋转,而四元数则提供了一种更加简洁和稳定的方式来实现旋转表示。设欧拉角为(α,β,γ)(\alpha,\beta
- 【网络安全】网络安全中的离散数学
flyair_China
安全架构
一、离散数学核心知识点与网络安全映射1.数论(NumberTheory)知识点安全应用场景实例说明质因数分解RSA公钥加密大整数分解难题(2048位密钥需数万年破解)模运算Diffie-Hellman密钥交换利用(gamodp)实现安全协商欧拉定理RSA加密/解密me*d≡m(modn)保障解密还原中国剩余定理高效解密优化RSA-CRT加速解密运算达70%2.代数结构(AlgebraicStruc
- 基于Matlab的四旋翼无人机动力学PID控制仿真,具体内容包括:
资深码侬
matlab无人机开发语言
基于Matlab的四旋翼无人机动力学PID控制仿真,具体内容包括:运用欧拉方程对地面坐标到机体坐标的转换矩阵进行了推导在无人机动力学模型基础上,采用经典PID控制算法对其内环姿态和外环位置进行控制说明文档:①详细推导四旋翼飞行器的数学模型②PID控制器的设计、位置回路控制器设计、姿态回路控制器设计③PID参数调整④仿真结果分析98文章目录**1.四旋翼飞行器的数学模型****旋转矩阵推导****2
- leetcode332.重新安排行程:优先队列与DFS实现欧拉路径的行程规划
Musennn
leetcode刷题详解深度优先算法leetcodejava
一、题目深度解析与行程规划本质题目描述给定一个机票的字符串二维数组tickets,每个元素是[from,to]的形式,表示从from到to的机票。要求找出从JFK出发的行程,且必须使用所有机票,若存在多种可能的行程,返回字典序最小的那个。核心特性分析图论模型:每个机场是图的节点,机票是图的边,问题转化为在图中寻找一条经过所有边的路径欧拉路径:题目本质是寻找图中的欧拉路径(经过每条边恰好一次的路径)
- 如何查看BNO055的模式
qqqweiweiqq
自动驾驶导航小车(ROSLidar)笔记
很好,我们现在结合你提供的信息,来具体判断你BNO055刚开机时yaw=26°是相对于谁的夹角。✅前提信息总结(从你说的得出):你使用的是BNO055传感器你读取了/imu/data话题,并用tf.transformations.euler_from_quaternion转换为了欧拉角刚开机yaw就是约26°你还未明确告诉我你是否设置为NDOF模式或是否完成磁力计校准判断:yaw=26°是谁和谁的
- 物理学中的群论:三维空间转动变换
AI天才研究院
AI大模型企业级应用开发实战Agent实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
物理学中的群论:三维空间转动变换1.背景介绍1.1问题的由来在物理学领域,特别是量子力学和相对论中,研究物体在空间中的运动是至关重要的。物体的位置、速度以及更深层次的内在性质都受到物理定律的严格规范。当讨论物体的旋转运动时,数学描述变得尤为重要。在三维空间中,物体的旋转可以通过一组称为“旋转矩阵”或者“欧拉角”的方式来精确描述。这些描述方式不仅在理论物理学中不可或缺,也是计算机图形学、机器人学、航
- PCL 欧拉角转轴角
点云侠
CloudCompare算法计算机视觉开发语言人工智能c++
目录一、算法原理二、代码实现三、结果展示一、算法原理 轴角表示法使用旋转轴u=(ux,uy,uz)\mathbf{u}=(u_x,u_y,u_z)u=(ux,uy,uz)和旋转角θ\thetaθ描述旋转。欧拉角转轴角的核心思想是:将三个欧拉旋转等效为绕单一轴的旋转。推导步骤:欧拉角→旋转矩阵:给定欧拉角(α,β,γ)(\alpha,\beta,\gamma)(α,β,γ)(Z-Y-X顺序),旋转
- 【AIGC专栏】StableDiffusion的WebUI界面-生成图片效果
雾岛心情
AIGC内容创作AIGCstablediffusion
迭代步数用于计算图像的迭代结果,通常来说迭代步数越多,细节越多,渲染越慢。迭代步数越少,细节越少,渲染速度越快。这里的迭代步数为1,则会出现一团模糊,迭代步数太高,越清楚。采样器种类非常多,但是多半情况下也是如下大类:带a的类型采样比较随机,关键词识别率比较低Karras去噪速度比较快Euler采样器:欧拉采样方法。Heun采样器:欧拉的一个更准确但是较慢的版本。LMS采样器:线性多步法,与欧拉采
- 经典数学公式可视化工具1.0
辣香牛肉面
工具类数学公式可视化
概述经典数学公式可视化工具1.0是一款旨在通过图形化界面和动态交互帮助用户直观理解经典数学公式。软件以可视化方式展示公式的图形表现,并提供鼠标拖动、键盘控制等交互功能,适合学生、教师以及对数学和物理感兴趣的用户。软件支持14个经典公式(未来会增加更多有代表性的公式)包括:l麦克斯韦方程组l欧拉公式l牛顿第二定律l勾股定理l质能方程(E=mc²)l薛定谔方程l1+1=2l德布罗意关系l傅里叶变换(方
- 如何计算复指数 $i^{-2i}$
士兵突击许三多
matlab基础matlab
如何计算复指数i−2ii^{-2i}i−2i复指数计算是复分析中的一个重要内容。下面我们详细解析i−2ii^{-2i}i−2i的计算方法。关键步骤表达复数iii的指数形式根据欧拉公式,复数iii可以表示为:i=eiπ2i=e^{i\frac{\pi}{2}}i=ei2π应用对数恒等式对于任意复数z≠0z\neq0z=0和www,复指数的定义为:zw=ewlnzz^w=e^{w\lnz}zw=e
- 欧拉公式:连接数学与物理多领域的核心纽带
进一步有进一步的欢喜
信号处理数学原理推荐系统欧拉公式
欧拉公式:数学与物理世界的桥梁摘要欧拉公式eiθ=cosθ+isinθe^{i\theta}=\cos\theta+i\sin\theta
- STM32G4 TIM1触发ADC转换
perseverance52
stm32ADC注入
STM32G4TIM1触发ADC转换相关篇《HALSTM32G4+ADC手动触发采集+各种滤波算法实现》《HALSTM32G4+TIM13路PWM互补输出+VOFA波形演示》《HALSTM32G4内部运放的使用》✨继欧拉电子无刷电机驱动相关视频学习–STM32G4FOC开发实战—TIM1ADCCOMPDAC级联STM32G4FOC开发实战—TIM1ADCCOMPDAC级联相对应的文章:https:
- 欧拉降幂(JAVA)蓝桥杯乘积幂次
俺不是西瓜太郎´•ﻌ•`
蓝桥杯java蓝桥杯开发语言
这个题可以使用欧拉降幂,1000000007是质数,所以欧拉函数值为1000000006.importjava.util.Scanner;//1:无需package//2:类名必须Main,不可修改publicclassMain{publicstaticvoidmain(String[]args){Scannerscanner=newScanner(System.in);//输入longn=sca
- 欧拉系统安装,配置静态ip
zzxxlty
tcp/ip服务器网络协议
选择安装server版本配置静态ipipaddr查看网口,假设网口为ens192vi/etc/sysconfig/network-scripts/ifcfgxxx修改dhcp为static,ip地址,netmask,gateway,dns改完后nmcliconnectionreloadnmcliconnectionupens192systemctlrestartNetworkManageripad
- 欧拉系统离线部署docker
zzxxlty
dockereurekaspringcloud
https://www.cnblogs.com/hsh96/p/18150538Docker离线安装指南本文介绍了如何在Linux系统上进行Docker的离线安装。首先,确保欧拉系统安装的是server版本,否则没有tar工具。您需要下载Docker的离线安装包。您可以从以下链接获取所需的安装包:https://download.docker.com/linux/static/stable/以下以
- 国产麒麟 欧拉 系统配置ip后重启网卡
zzxxlty
linux服务器网络
nmclicreloadens192(网卡名)nmclicupens192或者nmclidconnectens192或者nmclidreapplyens192
- 华为昇腾Atlas 300I DUO ram64架构部署RagFlow
s6944660
华为AIGC人工智能知识图谱
华为昇腾Atlas300IDUO欧拉22部署RagFlow环境说明操作系统openEuler22.03LTSAtlas300IDUOCPU≥4核内存≥16GB磁盘≥50GBDocker≥24.0.0和DockerCompose≥v2.26.1官网资源要求说明及步骤前置配置配置国内镜像端点(关键步骤)#在运行脚本前设置环境变量exportHF_ENDPOINT=https://hf-mirror.c
- 基于STM32F103单片机的小四轴飞行器开发
FrankFeng01
单片机stm32嵌入式硬件
序言本文采用STM32F103C8T6做主控芯片,整体控制思路分为以下四步:1、获取飞行器六轴数据:MPU6050采集飞行器原始六轴数据(三轴加速度、三轴角速度),通过卡尔曼滤波算法对加速度进行滤波、角速度采用一阶低通滤波。2、进行姿态解算:对滤波后的数据采用四元数姿态解算,得到飞行器姿态:欧拉角(翻滚角、俯仰角和偏航角)。3、获取手柄控制数据(期望值):通过NRF24L01无线模块,获取遥控手柄
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》