- TCAD到底难不难?应该怎么学?
懒小木半导体器件
算法tcad芯片
part1TCAD到底难不难?经常收到新学员提问,TCAD到底难不难?就我而言,说简单也简单,说难也难。简单是因为有很多先例,复制过来直接就可以运行,稍做修改就可以得到自己想要的结果。难是因为软件背后蕴含了复杂的半导体物理、器件物理、数值求解以及网格和图形学等知识。如果对这些不熟悉,就像盲人摸象,虽求解出了结果,但对仿真里面的每一句代码都不清楚用途,不懂原理,对所建立的仿真模型的“适用性”“准确性
- Java:实现找到R2中两个向量夹角中较小的那个算法(附带源码)
Katie。
Java算法完整教程java算法开发语言
目录项目背景详细介绍项目需求详细介绍相关技术详细介绍实现思路详细介绍完整实现代码代码详细解读项目详细总结项目常见问题及解答扩展方向与性能优化1.项目背景详细介绍在计算机图形学、机器人导航、物理模拟和数据分析中,常需要计算二维平面(R2\mathbb{R}^2)中两个向量之间的夹角。夹角度量能帮助我们判断方向差异、进行路径规划、控制转向和计算投影等操作。具体场景包括:图形旋转与动画:根据两帧之间的方
- 地理信息系统概述(三)
红小厨
地理信息系统(GIS)学习笔记地理信息系统GIS
6国内外研究现状地理信息系统是20世纪60年代逐渐发展起来的一门新兴技术。20世纪60年代初,在计算机图形学的基础上出现了计算机化的数字地图。1950年,麻省理工学院为它的旋风一号计算机制造了第一台图形显示器;1958年,美国的caComp公司在联机的数字记录仪的基础上研制成滚筒式绘图仪;1962年,麻省理工学院的IvanE.Suther在其博士学位论文中,首次提出了计算机图形学的术语,并论证了交
- 3D图形学编程基础-基于Direct3D11-学习记录(一)初始化DX设备,实现立方体绘制
莫名追求
学习笔记Direct3d11directx
第一次写博客这个东西,平时自己学习的时候记录的东西都是纸质的,查找不太方便,而且由于自己得不少知识学习都来自CSDN。所以在这里做一个我自学的记录!由于第一次学习Directx,记录的很多东西都是自己简单了解到的。可能不全,甚至可能不对,先记录下,以后修改!基于VisualC++,Directx学习记录正式开始:一:基础概念的了解1.Direct3D的定义:是微软公司创建的多媒体编程接口。由C++
- 中国计算机学会(CCF)推荐学术会议-C(计算机图形学与多媒体):MMM 2026
爱思德学术
信号处理图形渲染图像处理人工智能
MMM2026MMMisaleadinginternationalconferenceforresearchersandindustrypractitionersforsharingnewideas,originalresearchresultsandpracticalexperiencesfromallMMMrelatedareas.Theconferencecallsforresearchpa
- 理解欧拉角:定义、转换与应用
郝学胜-神的一滴
计算机图形学程序人生图形渲染游戏程序
1.引言在三维空间中描述物体的旋转时,欧拉角(EulerAngles)是最直观的方法之一。它通过三个连续的绕轴旋转来表示任意朝向,广泛应用于机器人学、航空航天、计算机图形学等领域。然而,不同的欧拉角定义(如经典欧拉角和泰特-布莱恩欧拉角)以及它们之间的转换关系常常让人困惑。本文将系统介绍欧拉角的定义、旋转矩阵和四元数表示,并详细讲解如何在不同欧拉角之间进行转换。2.欧拉角的定义欧拉角根据旋转轴的选
- 空间曲线正交投影及其距离计算的理论与实践
老歌老听老掉牙
python正交投影
引言:正交投影的几何本质在三维空间中,正交投影是一种基础而重要的几何变换,它将空间中的点沿特定方向映射到一个平面上。当我们考虑将空间曲线投影到由给定法向量n\mathbf{n}n定义的平面时,这一问题在计算机图形学、CAD/CAM系统和科学计算中具有广泛应用。本文将从数学原理、Python实现到距离计算的等价性问题,全面探讨这一几何操作的深层内涵。设空间曲线由参数方程r(t)=(x(t),y(t)
- 【图像处理基石】如何入门大规模三维重建?
小米玄戒Andrew
图像处理基石深度学习人工智能三维重建大规模三维重建立体视觉大模型LLM
入门大规模三维重建需要从基础理论、核心技术到实践工具逐步深入,同时需关注该领域的经典工作和前沿进展。以下是分阶段的入门路径及值得重点学习的工作:一、基础理论与前置知识大规模三维重建的核心是从海量图像或传感器数据中恢复场景的三维结构,涉及计算机视觉、摄影测量、图形学、最优化等多个领域,需先掌握以下基础:数学基础线性代数:矩阵运算、特征值分解(用于相机姿态估计)、奇异值分解(SVD,用于基础矩阵求解)
- 纹理贴图算法研究论文综述
点云SLAM
算法图形图像处理算法纹理贴图计算机图形学计算机视觉人工智能虚拟现实(VR)纹理贴图算法综述
纹理贴图(TextureMapping)是计算机图形学和计算机视觉中的核心技术,广泛应用于三维重建、游戏渲染、虚拟现实(VR)、增强现实(AR)等领域。对其算法的研究涵盖了纹理生成、映射、缝合、优化等多个方面。1.引言纹理贴图是指将二维图像纹理映射到三维几何表面上,以增强模型的视觉真实感。传统方法主要关注静态几何模型上的纹理生成与映射,而近年来,随着多视角图像重建、RGB-D扫描、神经渲染的发展,
- AABB包围盒和OBB包围盒区别
哈市雪花
图形学AABBOBB包围盒图形学boundingbox
1.问题图形学中经常出现AABB包围盒、OBB包围盒、包围球等,这些概念初次接触时有点容易混淆;2.概念AABB:Axis-AlignedBoundingBox,轴对齐包围盒;OBB:OrientedBoundingBox,有向包围盒;包围球:外接球;OBB比包围球和AABB更加逼近物体,能显著减少包围体的个数3.其他类似的概念还有凸包、最小外接轮廓等,有兴趣的可以查阅相关资料。
- Python——turtle库
宅男很神经
开发语言python
前言:海龟绘图的起源与PythonTurtle库的哲学在计算机图形学的浩瀚世界中,Python的turtle(海龟绘图)库以其独特的魅力,为初学者打开了一扇通往可视化编程的奇妙大门。然而,其深度远不止于简单的入门,它蕴含着事件驱动、状态机、坐标几何以及与底层GUI库(Tkinter)交互的精妙机制。本指南将带您从最底层的逻辑开始,逐步向上,全面、无死角地剖析turtle库的每一个细节,揭示其内部运
- gesp c++ 七级知识点
以下是根据GESPC++七级考试大纲的超详细知识点解析与代码实现,涵盖数学函数、复杂动态规划、图论算法、哈希表等核心内容,每个知识点均包含概念说明、应用场景、使用方法、优缺点及完整代码示例。一、数学库函数1.1三角函数概念:sin(x)、cos(x)、tan(x)分别计算弧度为x的正弦、余弦、正切值。应用场景:几何计算、物理运动模拟、图形学。代码示例:#include#includeusingna
- OpenGL: OpenGL+Qt实现介绍 (一)
程序员小马兰
OpenGL+Qt计算机视觉图形渲染前端
一、通过这个教程我们能学到什么?1、计算机图形学的基础知识。2、使用OpenGL在QT中进行编程。3、使用OpenGL做出一些很酷的效果。二、需要哪些预备知识?1、熟悉C++编程语言、Qt基本操作。2、数学基础知识(线性代数、几何、三角学)。三、为什么要学习OpenGL?各种三维图形引擎,原理都类似,几乎没什么差别,学好了OpenGL对Unity3D、虚幻引擎、OSG、webGL等的使用都会有巨大
- Python 借助 Matplotlib 绘制分形图形的诀窍
Python编程之道
pythonmatplotlib信息可视化ai
Python借助Matplotlib绘制分形图形的诀窍关键词:Python,Matplotlib,分形图形,递归算法,数据可视化,数学艺术,计算机图形学摘要:本文深入探讨了使用Python和Matplotlib库绘制分形图形的核心技术。从分形数学原理入手,详细解析了多种经典分形图形的生成算法,包括曼德勃罗集、朱利亚集、科赫雪花、谢尔宾斯基三角形等。文章提供了完整的Python实现代码,结合Matp
- AR 地产互动沙盘:为地产沙盘带来变革
广州华锐视点
ar
在科技飞速发展的今天,AR(增强现实)技术应运而生,为解决传统地产沙盘的困境提供了全新的思路和方法。AR技术,简单来说,是一种将计算机生成的虚拟信息与真实环境相融合的技术。它通过摄像头、传感器等设备获取真实场景的信息,再利用计算机图形学技术将虚拟内容与真实场景进行融合,最终通过显示器将合成图像呈现给用户,使用户在观察真实世界的同时,获得额外的信息和视觉体验。当AR技术与地产沙盘相结合,便产生了令人
- matlab 欧拉角转四元数
点云侠
matlab与合成孔径雷达matlab开发语言算法
目录一、概述一、概述1、计算原理2、实现步骤3、主要函数三、代码实现四、结果展示一、概述目录一、概述一、概述1、计算原理2、实现步骤3、主要函数三、代码实现四、结果展示一、概述 将欧拉角转换为四元数是计算机图形学、机器人学和物理仿真中常见的任务。欧拉角通过一系列的角度描述物体在空间中的旋转,而四元数则提供了一种更加简洁和稳定的方式来实现旋转表示。设欧拉角为(α,β,γ)(\alpha,\beta
- NeRF-Pytorch:NeRF神经辐射场复现——Pytorch版全流程分析与测试【Ubuntu20.04】【2025最新版!!!】
那就举个栗子!
三维重建计算机视觉人工智能
一、引言在计算机视觉和计算机图形学的交叉领域中,视图合成(ViewSynthesis)一直是一个充满挑战的研究方向。传统的三维重建方法往往需要复杂的几何建模和纹理映射过程,而且在处理复杂光照和材质时效果有限。2020年,来自UCBerkeley的研究团队提出了NeuralRadianceFields(NeRF),这一革命性的方法彻底改变了我们对三维场景表示和渲染的理解。NeRF的核心思想是将三维场
- OpenGL-什么是软OpenGL/软渲染/软光栅?
软OpenGL(SoftwareOpenGL)或者软渲染指完全通过CPU模拟实现的OpenGL渲染方式(包括几何处理、光栅化、着色等),不依赖GPU硬件加速。这种模式通常性能较低,但兼容性极强,常用于不支持硬件加速的环境或开发调试。例如在集成显卡HD620上运行SolidWorks时,若驱动不支持硬件加速,系统会自动回退到软件OpenGL模式(即"软件opengl")进行渲染。计算机图形学中也
- 数字人分身系统源码搭建定制化开发,支持OEM
在人工智能技术蓬勃发展的今天,数字人分身系统凭借其独特的交互性和广泛的应用场景,成为了众多企业和开发者关注的焦点。从虚拟主播、智能客服到数字员工,数字人分身系统正逐渐渗透到各个领域。本文将详细阐述数字人分身系统源码搭建与定制化开发的全流程,为技术爱好者和企业开发者提供全面的技术参考。一、数字人分身系统概述数字人分身系统是一个综合性的技术解决方案,它融合了计算机图形学、人工智能、语音识别与合成、自然
- 数智管理学(二十五)
虚谷23
数智管理学人工智能网络大数据企业数智化创业创新
三、动态资源优化的实现技术动态资源配置的实现离不开先进的技术支撑,以下几项技术是其关键要素:(一)数字孪生技术:虚拟映射真实资源1.虚拟模型构建与实时同步数字孪生技术通过传感器采集物理资源的各种数据,如设备的几何形状、物理特性、运行状态等,利用计算机图形学、建模技术和仿真技术,构建出与物理资源高度相似的虚拟模型。在智能工厂中,对于每一台生产设备,都可以建立对应的数字孪生模型,该模型不仅包括设备的外
- vtk和opencv和opengl直接的区别是什么?
only-lucky
opencv人工智能计算机视觉
简介VTK、OpenCV和OpenGL是三个在计算机图形学、图像处理和可视化领域广泛使用的工具库,但它们在功能、应用场景和底层技术上存在显著差异。以下是它们的核心区别和特点对比:1.核心功能与定位工具核心功能主要应用领域VTK(VisualizationToolkit)三维可视化&科学计算,提供高级渲染、体绘制、交互式可视化医学影像、地质建模、流体力学仿真OpenCV(OpenSourceComp
- WebGL&图形学总结(二)
GISer_Jinger
中大厂面试webgl前端javascript
一、简历中图形学与渲染相关内容梳理(一)专业技能中的图形学储备WebGL与Shader编程:掌握GPU渲染管线原理,能使用GLSL编写着色器,熟悉ShadowMapping、RTT等图形算法。三维引擎应用:熟练使用Three.js和Cesium.js,具备三维场景搭建与高效渲染能力。可视化技术:熟悉Canvas、SVG,掌握GPU加速渲染与主流三维引擎集成(如WebGL与Cesium结合)。(二)
- Perlin柏林噪音算法的Java实现
程序逐梦人
算法java开发语言Java
Perlin柏林噪音算法的Java实现柏林噪音是一种用于生成自然、有机和随机纹理的算法。它在计算机图形学、游戏开发和模拟领域中得到广泛应用。本文将介绍如何使用Java实现Perlin柏林噪音算法,并提供相应的源代码。Perlin柏林噪音算法的原理是基于一种平滑的插值方法,通过对不同频率和振幅的噪音值进行叠加,生成连续的随机值。以下是Java代码实现Perlin柏林噪音算法的示例:importjav
- 3D门锁门把模型设计的探索与实践
半清斋
本文还有配套的精品资源,点击获取简介:本文探讨了如何利用计算机图形学和3D建模技术设计逼真、实用且美观的门锁及门把手数字模型。涵盖了从设计到渲染的全过程,包括功能与安全性、材料与质感、细节处理、装配与动画、渲染后期处理以及文件格式的兼容性和标准化定制。同时,利用高级建模软件如Autodesk3dsMax或Blender,提供了详细的3D模型构建、编辑与优化方法。1.计算机图形学和3D建模技术应用在
- 贝塞尔曲线与动画效果:从基础到进阶
江卓尔
贝塞尔曲线动画效果三次贝塞尔二次贝塞尔HTML5Canvas
贝塞尔曲线与动画效果:从基础到进阶背景简介在计算机图形学中,贝塞尔曲线是一种用于设计光滑曲线的重要工具。在动画和游戏开发中,贝塞尔曲线经常被用来生成平滑的运动路径。本章节将深入探讨贝塞尔曲线在动画中的应用,以及如何在HTML5Canvas上模拟物理效果以增强动画的真实感。贝塞尔曲线的基础应用三次贝塞尔曲线需要四个控制点来定义其形状。在本章节中,作者通过一个环形移动对象的示例,向我们展示了三次贝塞尔
- C语言实现矩阵转置
人才程序员
C语言系列课程c语言矩阵算法开发语言后端软件工程软件构建
文章目录C语言实现矩阵转置1.什么是矩阵转置?2.矩阵转置的C语言实现2.1定义矩阵2.2转置矩阵2.3示例代码2.4代码解析3.运行示例4.总结C语言实现矩阵转置矩阵转置是线性代数中的一个基本操作,它将一个矩阵的行和列交换。在计算机中,矩阵转置常常用来处理数据结构的优化、图像处理、图形学等领域。在C语言中,实现矩阵转置相对简单。本文将详细介绍矩阵转置的概念、实现方法,并通过示例代码来帮助你理解矩
- 物理学中的群论:三维空间转动变换
AI天才研究院
AI大模型企业级应用开发实战Agent实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
物理学中的群论:三维空间转动变换1.背景介绍1.1问题的由来在物理学领域,特别是量子力学和相对论中,研究物体在空间中的运动是至关重要的。物体的位置、速度以及更深层次的内在性质都受到物理定律的严格规范。当讨论物体的旋转运动时,数学描述变得尤为重要。在三维空间中,物体的旋转可以通过一组称为“旋转矩阵”或者“欧拉角”的方式来精确描述。这些描述方式不仅在理论物理学中不可或缺,也是计算机图形学、机器人学、航
- 算法导论第十八章 计算几何:算法中的空间艺术
第十八章计算几何:算法中的空间艺术“几何学是描绘宇宙秩序的永恒诗篇。”——约翰内斯·开普勒计算几何将数学的优雅与算法的实用性完美结合,在计算机图形学、机器人导航和地理信息系统中扮演着关键角色。本章将带您探索几何问题的算法解决方案,从基础的点线关系到复杂的空间剖分,揭示算法如何理解和操纵我们的几何世界。18.1几何基础:点、线和多边形18.1.1几何对象的表示在计算几何中,我们使用简洁的数学结构表示
- 线性代数导引:附录:行列式几何解释
AGI大模型与大数据研究院
AI大模型应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍线性代数是数学中的一个重要分支,它研究的是向量空间和线性变换。在计算机科学中,线性代数被广泛应用于图形学、机器学习、数据挖掘等领域。行列式是线性代数中的一个重要概念,它可以用来求解线性方程组的解、计算矩阵的逆、判断矩阵是否可逆等问题。本文将介绍行列式的几何解释,帮助读者更好地理解行列式的概念和应用。2.核心概念与联系2.1向量的叉积向量的叉积是指两个向量的乘积得到的另一个向量。设向量$
- 分段贝塞尔曲线
士兵突击许三多
matlab基础贝塞尔曲线matlab贝塞尔曲线
分段贝塞尔曲线什么是分段贝塞尔曲线贝塞尔曲线是一种参数化曲线,广泛应用于计算机图形学和相关领域。分段贝塞尔曲线是将多条贝塞尔曲线连接起来形成的更复杂曲线,它能够表示比单条贝塞尔曲线更复杂的形状。基本概念单段贝塞尔曲线:由控制点和Bernstein基函数定义二次贝塞尔曲线(3个控制点)三次贝塞尔曲线(4个控制点)分段贝塞尔曲线:将多条贝塞尔曲线首尾相连C0连续:简单连接,曲线段在连接点处位置相同C1
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f