- Uncovering Bias in Large Vision-Language Models at Scale with Counterfactuals
樱花的浪漫
因果推断大模型与智能体人工智能算法机器学习语言模型自然语言处理
UncoveringBiasinLargeVision-LanguageModelsatScalewithCounterfactuals-ACLAnthologyhttps://aclanthology.org/2025.naacl-long.305/1.概述最近,大型视觉-语言模型(LVLMs)因其能够将语言模型(LLMs)的对话能力扩展到多模态领域而受到欢迎。具体来说,LVLMs可以根据文本提
- python进行常见的数学计算(方差,一元二次方程,求导,积分等等)
ccut 第一混
python
代码如下:importnumpyasnpimportmathimportcmathimportscipy#平均数defaverage(lst):sum_lst=0forninlst:sum_lst=sum_lst+nreturnsum_lst/len(lst)#方差defvariance(lst):average_lst=average(lst)sum_variance=0forninlst:su
- 广告(六)
安安Ro7cie
2018-08-07D09/33【读书感悟】3173-安安消费心理学的17个基本原则第十二个:实例VS.数据实例和统计数据哪个更能吸引人呢?哪个会刺激人们的欲望呢?最重要的是,哪个会真正说服人们呢?大多数人都会选择实例,当然,了解数据也非常必要,但如果想让自己的收银机叮当作响,那就应该始终把重点投放到实例上面。因为,情感是销售的钥匙。实例能够诱发情感,可以让顾客想象自己使用产品或服务时,他们会采取
- 大模型系列——长度外推
confiself
深度学习
1.长度外推存在的问题1.长度外推存在不能识别的2.长度外推存在熵变问题3.长度内插入存在缩小距离分布2.直接使用外推技巧1.窗口局部关注+最终输出全局注意2.熵变+✖系数3.keynorm,增加模型识别距离能力4.增加bias,类似于SandwichTransformer升级之路:16、“复盘”长度外推技术
- 第十四章:AI的数据“集装箱”:彻底搞懂Tensor的Batch与维度
爱分享的飘哥
AI新纪元:120日觉醒计划TensorPyTorchBatchSize数据处理AI基础深度学习教程
AI数据集中箱前言:为什么AI从不“零售”,总是“批发”?1:Batch(批次)——GPU的“灵魂伴侣”1.1单个处理vs.批量处理:CPU与GPU的思维差异1.2DataLoader:PyTorch的“自动化装箱员”2:维度的语言——破译[B,L,D]的含义2.1[L,D]:一个句子的“二维画像”2.2[B,L,D]:一批句子的“三维魔方”2.3用代码直观感受维度的增加3:追踪Tensor的“变
- 专业团队 vs. 微信投票刷票器:谁能助你快速提升票数?
口碑信息传播者
微信投票活动已成为各类组织、企业和个人推广品牌、宣传活动的常用手段。为了在激烈的竞争中脱颖而出,快速提升票数成为许多参与者的首要目标。然而,在追求票数的过程中,参与者面临着两种截然不同的选择:专业团队和微信投票刷票器。那么,究竟谁能助你快速提升票数?本文将从多个角度进行详细分析。一、微信投票刷票器的诱惑与风险微信投票刷票器是一种自动化工具,可以在短时间内为某个选项投下大量虚假票数,从而迅速提升票数
- 【C语言】指针的爱恨纠葛:常量指针vs指向常量的指针
LuckiBit
C语言c语言java指针常量指针指向常量的指针嵌入式内存
目录常量指针vs.指向常量的指针1.综合比较2.常量指针(ConstantPointer)2.1定义与语法2.2示例代码2.3解释2.4应用场景2.5注意事项3.指向常量的指针(PointertoConstant)3.1定义与语法3.2示例代码3.3解释3.4应用场景3.5注意事项4.复杂示例4.1常量指针的复杂示例输出结果4.2指向常量的指针的复杂示例输出结果5.实际应用中的最佳实践5.1使用常
- Kotlin 泛型 | 01. 基础
一、泛型1.1含义参数化类型,用尖括号这种方式表示,如、、等。比如:方法的参数一般指定具体类型,如果把参数的类型也参数化,那这就是泛型本尊了。interfaceList:Collection{overridefuncontains(element:@UnsafeVarianceE):Boolean}总的来说,泛型本质就是参数化类型,这种类型可以用在类、接口和方法的创建中,分别称为泛型类、泛型接口、
- 二分查找进阶:查找最靠左和最靠右的索引(Java实现)
算法第二深情
算法学习算法javaintellij-idea
一、引言在实际开发中,二分查找(BinarySearch)是一种高效的查找算法,尤其在处理有序数组时表现出色。然而,标准的二分查找只能返回目标值的任意一个位置(例如中间位置)。如果需要找到目标值的最左索引或最右索引(例如统计重复元素的出现次数),或者只需要单纯知道最左或最有二、普通二分查找vs.边界查找1.普通二分查找publicstaticintbinarySearch(int[]arr,int
- 关于NUC+雷达+倍福组网交换机是否完全足够的问题(是否需要一个路由器)
Tipriest_
机器人实际系统网络机器人交换机路由器IO网段
你好!这是一个非常经典和常见的工业自动化/机器人系统组网问题。你的想法完全正确。核心答案:只用一个交换机是完全可以的,而且是标准的做法。你不需要路由器来提供网关(Gateway)。下面我为你详细解释一下,并提供具体的操作步骤和注意事项。1.为什么一个交换机就够了?(交换机vs.路由器)为了理解这一点,我们需要明白交换机和路由器的根本区别:交换机(Switch):作用:连接同一个局域网(LAN)内的
- Kotlin方差
Kiri霧
kotlin开发语言android
泛型类型简介泛型类型提供了一种重用代码的方式,使数据类型可以作为变量使用。这样,我们就能创建可以操作不同类型对象的类、接口和方法,只要这些对象符合类型参数的要求。在Kotlin中,泛型类型用关键字定义,但T可以是任意字母或单词。在本主题中,我们将深入探讨泛型编程,并介绍类型、子类型和变异性(variance)等概念。这些概念在像Kotlin这样的静态类型语言中非常重要,因为类型关系会在编译时检查,
- 带你走进相位解包裹算法课程
Cedric1113
程序人生
第一节:相位解包裹基础理论与核心概念课程导入相位解包裹在三维测量中的重要性(工业检测、生物医学等)包裹相位与真实相位的关系(反正切函数的主值限制)核心概念解析相位跳变的原因与表现(噪声、光照不均等干扰)解包裹算法分类:路径跟踪法vs.全局优化法经典算法初探Goldstein枝切法(残差点检测与枝切线构建)最小二乘法(全局平滑优化原理)实验演示:仿真包裹相位图的生成与基础算法解包裹效果对比第二节:路
- 【AI大模型】LLM模型架构深度解析:BERT vs. GPT vs. T5
我爱一条柴ya
学习AI记录ai人工智能AI编程python
引言Transformer架构的诞生(Vaswanietal.,2017)彻底改变了自然语言处理(NLP)。在其基础上,BERT、GPT和T5分别代表了三种不同的模型范式,主导了预训练语言模型的演进。理解它们的差异是LLM开发和学习的基石。一、核心架构对比特性BERT(BidirectionalEncoder)GPT(GenerativePre-trainedTransformer)T5(Text
- window显示驱动开发—XR 格式的强制转换功能
程序员王马
windows图形显示驱动开发xr
DXGI_FORMAT_R10G10B10_XR_BIAS_A2_UNORM格式是DXGI_FORMAT_R10G10B10A2_TYPELESS系列的成员。因此,应用程序可以通过API级别的“视图”概念将DXGI_FORMAT_R10G10B10_XR_BIAS_A2_UNORM格式强制转换为该系列的任何其他成员。此过程是应用程序呈现到资源的预期方式。具体而言,Direct3D运行时只能通过驱动
- 【LeetCode102.二叉树的层序遍历】vs.【LeetCode103.二叉树的锯齿形层序遍历】
小鲈鱼-
数据结构c++算法
题目链接LeetCode102.二叉树的层序遍历:102.二叉树的层序遍历-力扣(LeetCode)LeetCode103.二叉树的锯齿形层序遍历:103.二叉树的锯齿形层序遍历-力扣(LeetCode)实现思路定义一个队列,每一轮循环,队列都会放入新的一层的节点;在下一次循环中,取出上一层放入的所有新节点(放入数组中),并依次从队列中踢出这些节点,获取到这些节点的左右孩子,再放入队列中。如此,就
- window显示驱动开发—从 BGR8888 转换为 XR_BIAS
程序员王马
windows图形显示驱动开发xr
例如,从BGR8888类型格式的转换(,DXGI_FORMAT_B8G8R8A8_UNORM)到XR_BIAS是无损的。显式选择比例因子510,用于在BGR8888类型格式与XR_BIAS之间提供完全不可逆的转换,而不会导致比例系数511所暗示的非线性跳跃接近0.5。核心设计原理无损转换条件BGR8888是8位/通道的归一化格式(值范围[0,1],步长1/255)。XR_BIAS的10位精度(范围
- 全方位解析:AWS vs. Azure vs. Google Cloud
如果你的业务正在增长,并且正在寻求以云服务形式获取IT方面的帮助,那么实际上只有少数供应商可供选择,差不多就是AWS、MicrosoftAzure、GoogleCloud、IBMCloud这几个。当然,还有其他优质公司,包括阿里巴巴、Salesforce、腾讯、甲骨文、戴尔EMC、Rackspace、Equinix以及其他二级和三级玩家。它们的特点在于更小、更个性化——这是许多企业喜欢和寻求的。本
- 黑客 vs. 网安:谁才是数字世界的主宰? 2024年信息安全人员应该重点学什么?
网安导师小李
程序员编程网络安全linux运维服务器excelweb安全pythonjava
在当今数字化飞速发展的时代,信息安全问题日益严峻。黑客攻击、数据泄露、网络病毒等威胁不断涌现,企业和个人的隐私安全岌岌可危。随着人工智能、物联网、云计算、区块链等新技术的兴起,信息安全行业正面临着新的挑战和机遇。2024年信息安全行业面临的挑战和机遇**1.人工智能(AI):**AI技术的广泛应用使得攻击者能够利用机器学习和自动化技术进行更具针对性的攻击。例如,恶意软件可以通过AI算法不断自我进化
- 大语言模型应用提示工程Prompt Engineering
全栈你个大西瓜
人工智能大模型自然语言处理prompt人工智能提示工程
提示工程(PromptEngineering)是指通过精心设计和优化输入提示(prompt),以引导人工智能模型(如大型语言模型)生成更符合预期的输出。一、提示工程的核心任务明确任务目标确定模型需要完成的具体任务(如文本生成、翻译、分类、问答等)。示例:需要模型生成一篇产品评测vs.需要模型总结文章要点。设计提示结构包含必要的上下文、示例、格式要求和约束条件。示例:请根据以下产品参数生成一段吸引人
- EventBridge精准之道:CloudTrail事件 vs. 服务原生事件,我该如何选?
运维开发王义杰
aws系统运维aws运维
当我们深入使用AWSEventBridge时,常常会发现一个有趣的现象:对于同一个操作(比如启动一个EC2实例),EventBridge中似乎会出现两种事件。一种来自CloudTrail,记录了API调用的行为;另一种则直接来自EC2服务本身,描述了实例状态的变化。这引出了一个至关重要的问题:在创建EventBridge规则时,我应该监听哪一种?它们有什么区别?{"source":[{"prefi
- 噪声预测 vs. 数据预测:扩散模型中的目标函数选择与生成表现对比
观熵
扩散模型工程指南机器学习算法人工智能
噪声预测vs.数据预测:扩散模型中的目标函数选择与生成表现对比关键词:噪声预测、数据重建、MSELoss、ELBO、score-basedmodeling、DDPM、EDM、训练目标、采样策略摘要:扩散模型的训练目标设计直接影响模型收敛速度、生成质量与采样路径稳定性。最初的DDPM采用了预测添加噪声ε的方法,但近年来诸如EDM(ElucidatedDiffusionModels)等模型开始转向对原
- AWS Cognito vs. IAM Identity Center:别再混淆了!理清“用户身份”与“员工身份”的区别
运维开发王义杰
aws信息安全系统运维aws云计算
大家好,在AWS庞大的服务家族中,身份管理是构建安全、可扩展应用的核心。而提到身份管理,很多人常常会对AWSCognito和AWSIAMIdentityCenter(曾用名AWSSSO)感到困惑,特别是当看到它们都支持SAML时,会觉得功能似乎有所重合。这种困惑非常正常!它们确实都是处理“谁可以访问什么”的问题,但服务的对象和核心场景却截然不同。简单来说,一句话总结它们的核心区别就是:AWSCog
- 倾向得分匹配的stata命令_R语言系列1:倾向得分匹配
weixin_39995108
倾向得分匹配的stata命令
1PSM简介倾向评分匹配(PropensityScoreMatching,简称PSM)是一种统计学方法,用于处理观察研究(ObservationalStudy)的数据。在观察研究中,由于种种原因,数据偏差(bias)和混杂变量(confoundingvariable)较多,倾向评分匹配的方法正是为了减少这些偏差和混杂变量的影响,以便对实验组和对照组进行更合理的比较。这种方法最早由PaulRosen
- Spring AOP 和 AspectJ 有什么区别和联系?
冰糖心书房
SpringAOPspringjava后端aop
简单来说,可以把它们的关系比作:智能手机的相机vs.专业单反相机。SpringAOP(智能手机相机):内置于Spring框架中,开箱即用,非常方便。它能满足95%的日常AOP需求(如日志、事务、安全),性能也足够好。但它的功能相对有限,只能在特定场景下“拍照”(即只能增强方法的执行)。AspectJ(专业单反相机):是一个独立、完整且功能极其强大的AOP解决方案。它像一台专业相机,有各种镜头(连接
- v-if、display、visibility、opacity隐藏元素的区别
甘露寺
前端vuereact
前端元素隐藏与条件渲染完全指南(Vuevs.Reactvs.CSS)本文对比v-if、v-show、display:none、opacity:0、visibility:hidden以及React条件渲染的差异,帮你彻底掌握它们的适用场景!核心概念1.DOM树vs.渲染树DOM树:完整的HTML节点结构(无论是否隐藏)。渲染树:浏览器实际绘制到屏幕上的内容(隐藏元素可能被跳过)。2.关键差异特性是否
- 【开源项目】「安卓原生3D开源渲染引擎」:Sceneform‑EQR
「安卓原生3D开源渲染引擎」:Sceneform‑EQR渲染引擎“那一夜凌晨3点,第一次提交PR的手在抖……”——我深刻体会这种忐忑与激动。仓库地址:(github.com)。一、前言:开源对我意味着什么DIY的自由Vs.工业化的束缚刚入Android原生开发时,我习惯自己在项目里嵌入各种3D渲染/AR/XR模块,结构臃肿、流程混乱。当我知道GoogleSceneformSDK被弃用,起初只是出于
- Python深入理解迭代器和生成器
TiYong
python学习笔记python正则表达式数据库开发语言算法vscode
当说起Python里面的高级特性时,就不能不提迭代器(Iterators)和生成器(Generators)啦!它们就像是处理数据的一把利器,特别是对付大数据的时候,简直就是神器!咱们今天就来聊聊它们到底是啥,怎么用,还有点啥实际用途吧!目录1.迭代器(Iterators)2.使用迭代器3.自定义迭代器4.生成器(Generators)5.生成器vs.列表推导式6.生成器的惰性计算(LazyEval
- Mysql备份
牛爷爷敲代码
mysql数据库
Mysql备份MySQL备份类型及优势详解MySQL作为最流行的开源数据库之一,其数据备份策略至关重要。以下是MySQL常见备份类型及其优势的详细解析:一、物理备份vs.逻辑备份1.物理备份(PhysicalBackup)定义:直接复制数据库文件(如数据文件、日志文件)。工具:mysqldump(逻辑+物理混合)、mysqlpump、xtrabackup(推荐)。优势:速度快:无需解析SQL语句,
- 多头注意力机制中全连接函数
不知更鸟
深度学习
在神经网络(特别是Transformer中的多头注意力机制)中,全连接函数(FullyConnectedLayer,FCLayer)通常指的是一个线性变换层,即nn.Linear在PyTorch中的实现。它本质上是一个矩阵乘法加上偏置(bias)的操作,用于对输入数据进行线性变换。1.全连接函数(nn.Linear)是什么?nn.Linear(d_model,d_model)表示一个全连接层,它的
- 海光x86与Intel/AMD x86的差异解析:技术演进、架构博弈与未来之路
tianyuanwo
x86海光AMD
在信息技术领域,x86架构作为计算产业的基石,历经四十余年演进,形成了以Intel、AMD为主导的全球生态,而海光x86的崛起,则标志着中国在自主可控计算赛道上的关键突破。本文将从技术起源、指令集架构、硬件设计、生态兼容性及未来趋势五个维度,深度剖析海光x86与Intel/AMDx86的差异。一、技术起源:授权合作vs.自主创新1.海光x86:AMD授权下的国产化突围海光x86的技术根基源于AMD
- jQuery 跨域访问的三种方式 No 'Access-Control-Allow-Origin' header is present on the reque
qiaolevip
每天进步一点点学习永无止境跨域众观千象
XMLHttpRequest cannot load http://v.xxx.com. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:63342' is therefore not allowed access. test.html:1
- mysql 分区查询优化
annan211
java分区优化mysql
分区查询优化
引入分区可以给查询带来一定的优势,但同时也会引入一些bug.
分区最大的优点就是优化器可以根据分区函数来过滤掉一些分区,通过分区过滤可以让查询扫描更少的数据。
所以,对于访问分区表来说,很重要的一点是要在where 条件中带入分区,让优化器过滤掉无需访问的分区。
可以通过查看explain执行计划,是否携带 partitions
- MYSQL存储过程中使用游标
chicony
Mysql存储过程
DELIMITER $$
DROP PROCEDURE IF EXISTS getUserInfo $$
CREATE PROCEDURE getUserInfo(in date_day datetime)-- -- 实例-- 存储过程名为:getUserInfo-- 参数为:date_day日期格式:2008-03-08-- BEGINdecla
- mysql 和 sqlite 区别
Array_06
sqlite
转载:
http://www.cnblogs.com/ygm900/p/3460663.html
mysql 和 sqlite 区别
SQLITE是单机数据库。功能简约,小型化,追求最大磁盘效率
MYSQL是完善的服务器数据库。功能全面,综合化,追求最大并发效率
MYSQL、Sybase、Oracle等这些都是试用于服务器数据量大功能多需要安装,例如网站访问量比较大的。而sq
- pinyin4j使用
oloz
pinyin4j
首先需要pinyin4j的jar包支持;jar包已上传至附件内
方法一:把汉字转换为拼音;例如:编程转换后则为biancheng
/**
* 将汉字转换为全拼
* @param src 你的需要转换的汉字
* @param isUPPERCASE 是否转换为大写的拼音; true:转换为大写;fal
- 微博发送私信
随意而生
微博
在前面文章中说了如和获取登陆时候所需要的cookie,现在只要拿到最后登陆所需要的cookie,然后抓包分析一下微博私信发送界面
http://weibo.com/message/history?uid=****&name=****
可以发现其发送提交的Post请求和其中的数据,
让后用程序模拟发送POST请求中的数据,带着cookie发送到私信的接入口,就可以实现发私信的功能了。
- jsp
香水浓
jsp
JSP初始化
容器载入JSP文件后,它会在为请求提供任何服务前调用jspInit()方法。如果您需要执行自定义的JSP初始化任务,复写jspInit()方法就行了
JSP执行
这一阶段描述了JSP生命周期中一切与请求相关的交互行为,直到被销毁。
当JSP网页完成初始化后
- 在 Windows 上安装 SVN Subversion 服务端
AdyZhang
SVN
在 Windows 上安装 SVN Subversion 服务端2009-09-16高宏伟哈尔滨市道里区通达街291号
最佳阅读效果请访问原地址:http://blog.donews.com/dukejoe/archive/2009/09/16/1560917.aspx
现在的Subversion已经足够稳定,而且已经进入了它的黄金时段。我们看到大量的项目都在使
- android开发中如何使用 alertDialog从listView中删除数据?
aijuans
android
我现在使用listView展示了很多的配置信息,我现在想在点击其中一条的时候填出 alertDialog,点击确认后就删除该条数据,( ArrayAdapter ,ArrayList,listView 全部删除),我知道在 下面的onItemLongClick 方法中 参数 arg2 是选中的序号,但是我不知道如何继续处理下去 1 2 3
- jdk-6u26-linux-x64.bin 安装
baalwolf
linux
1.上传安装文件(jdk-6u26-linux-x64.bin)
2.修改权限
[root@localhost ~]# ls -l /usr/local/jdk-6u26-linux-x64.bin
3.执行安装文件
[root@localhost ~]# cd /usr/local
[root@localhost local]# ./jdk-6u26-linux-x64.bin&nbs
- MongoDB经典面试题集锦
BigBird2012
mongodb
1.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟
- JavaScript异步编程Promise模式的6个特性
bijian1013
JavaScriptPromise
Promise是一个非常有价值的构造器,能够帮助你避免使用镶套匿名方法,而使用更具有可读性的方式组装异步代码。这里我们将介绍6个最简单的特性。
在我们开始正式介绍之前,我们想看看Javascript Promise的样子:
var p = new Promise(function(r
- [Zookeeper学习笔记之八]Zookeeper源代码分析之Zookeeper.ZKWatchManager
bit1129
zookeeper
ClientWatchManager接口
//接口的唯一方法materialize用于确定那些Watcher需要被通知
//确定Watcher需要三方面的因素1.事件状态 2.事件类型 3.znode的path
public interface ClientWatchManager {
/**
* Return a set of watchers that should
- 【Scala十五】Scala核心九:隐式转换之二
bit1129
scala
隐式转换存在的必要性,
在Java Swing中,按钮点击事件的处理,转换为Scala的的写法如下:
val button = new JButton
button.addActionListener(
new ActionListener {
def actionPerformed(event: ActionEvent) {
- Android JSON数据的解析与封装小Demo
ronin47
转自:http://www.open-open.com/lib/view/open1420529336406.html
package com.example.jsondemo;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
impor
- [设计]字体创意设计方法谈
brotherlamp
UIui自学ui视频ui教程ui资料
从古至今,文字在我们的生活中是必不可少的事物,我们不能想象没有文字的世界将会是怎样。在平面设计中,UI设计师在文字上所花的心思和功夫最多,因为文字能直观地表达UI设计师所的意念。在文字上的创造设计,直接反映出平面作品的主题。
如设计一幅戴尔笔记本电脑的广告海报,假设海报上没有出现“戴尔”两个文字,即使放上所有戴尔笔记本电脑的图片都不能让人们得知这些电脑是什么品牌。只要写上“戴尔笔
- 单调队列-用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值
bylijinnan
java算法面试题
import java.util.LinkedList;
/*
单调队列 滑动窗口
单调队列是这样的一个队列:队列里面的元素是有序的,是递增或者递减
题目:给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.
要求:f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1
问题的另一种描述就
- struts2处理一个form多个submit
chiangfai
struts2
web应用中,为完成不同工作,一个jsp的form标签可能有多个submit。如下代码:
<s:form action="submit" method="post" namespace="/my">
<s:textfield name="msg" label="叙述:">
- shell查找上个月,陷阱及野路子
chenchao051
shell
date -d "-1 month" +%F
以上这段代码,假如在2012/10/31执行,结果并不会出现你预计的9月份,而是会出现八月份,原因是10月份有31天,9月份30天,所以-1 month在10月份看来要减去31天,所以直接到了8月31日这天,这不靠谱。
野路子解决:假设当天日期大于15号
- mysql导出数据中文乱码问题
daizj
mysql中文乱码导数据
解决mysql导入导出数据乱码问题方法:
1、进入mysql,通过如下命令查看数据库编码方式:
mysql> show variables like 'character_set_%';
+--------------------------+----------------------------------------+
| Variable_name&nbs
- SAE部署Smarty出现:Uncaught exception 'SmartyException' with message 'unable to write
dcj3sjt126com
PHPsmartysae
对于SAE出现的问题:Uncaught exception 'SmartyException' with message 'unable to write file...。
官方给出了详细的FAQ:http://sae.sina.com.cn/?m=faqs&catId=11#show_213
解决方案为:
01
$path
- 《教父》系列台词
dcj3sjt126com
Your love is also your weak point.
你的所爱同时也是你的弱点。
If anything in this life is certain, if history has taught us anything, it is
that you can kill anyone.
不顾家的人永远不可能成为一个真正的男人。 &
- mongodb安装与使用
dyy_gusi
mongo
一.MongoDB安装和启动,widndows和linux基本相同
1.下载数据库,
linux:mongodb-linux-x86_64-ubuntu1404-3.0.3.tgz
2.解压文件,并且放置到合适的位置
tar -vxf mongodb-linux-x86_64-ubun
- Git排除目录
geeksun
git
在Git的版本控制中,可能有些文件是不需要加入控制的,那我们在提交代码时就需要忽略这些文件,下面讲讲应该怎么给Git配置一些忽略规则。
有三种方法可以忽略掉这些文件,这三种方法都能达到目的,只不过适用情景不一样。
1. 针对单一工程排除文件
这种方式会让这个工程的所有修改者在克隆代码的同时,也能克隆到过滤规则,而不用自己再写一份,这就能保证所有修改者应用的都是同一
- Ubuntu 创建开机自启动脚本的方法
hongtoushizi
ubuntu
转载自: http://rongjih.blog.163.com/blog/static/33574461201111504843245/
Ubuntu 创建开机自启动脚本的步骤如下:
1) 将你的启动脚本复制到 /etc/init.d目录下 以下假设你的脚本文件名为 test。
2) 设置脚本文件的权限 $ sudo chmod 755
- 第八章 流量复制/AB测试/协程
jinnianshilongnian
nginxluacoroutine
流量复制
在实际开发中经常涉及到项目的升级,而该升级不能简单的上线就完事了,需要验证该升级是否兼容老的上线,因此可能需要并行运行两个项目一段时间进行数据比对和校验,待没问题后再进行上线。这其实就需要进行流量复制,把流量复制到其他服务器上,一种方式是使用如tcpcopy引流;另外我们还可以使用nginx的HttpLuaModule模块中的ngx.location.capture_multi进行并发
- 电商系统商品表设计
lkl
DROP TABLE IF EXISTS `category`; -- 类目表
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`id` int(11) NOT NUL
- 修改phpMyAdmin导入SQL文件的大小限制
pda158
sqlmysql
用phpMyAdmin导入mysql数据库时,我的10M的
数据库不能导入,提示mysql数据库最大只能导入2M。
phpMyAdmin数据库导入出错: You probably tried to upload too large file. Please refer to documentation for ways to workaround this limit.
- Tomcat性能调优方案
Sobfist
apachejvmtomcat应用服务器
一、操作系统调优
对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。
【适用场景】 任何项目。
二、Java虚拟机调优
应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。
J
- SQLServer学习笔记
vipbooks
数据结构xml
1、create database school 创建数据库school
2、drop database school 删除数据库school
3、use school 连接到school数据库,使其成为当前数据库
4、create table class(classID int primary key identity not null)
创建一个名为class的表,其有一