- 机器学习必备数学与编程指南:从入门到精通
a小胡哦
机器学习基础机器学习人工智能
一、机器学习核心数学基础1.线性代数(神经网络的基础)必须掌握:矩阵运算(乘法、转置、逆)向量空间与线性变换特征值分解与奇异值分解(SVD)为什么重要:神经网络本质就是矩阵运算学习技巧:用NumPy实际操作矩阵运算2.概率与统计(模型评估的关键)核心概念:条件概率与贝叶斯定理概率分布(正态、泊松、伯努利)假设检验与p值应用场景:朴素贝叶斯、A/B测试3.微积分(优化算法的基础)重点掌握:导数与偏导
- 线性代数(6)——向量空间
Irene_hong
1、向量空间(VectorSpace)对于向量空间的维度:Example:=all2-dimrealvectors,如,,相当于一个x-y平面;=allvectorswith3components;=allcolumnvectorswithnrealcomponents;1.1子向量空间(Sub-spaceofVectorSpace)在乘法/加法运算下,子向量空间必须是封闭的,不能超出原向量空间;
- 数学专业转型数据分析竞争力发展报告
Re_Yang09
数据分析数据挖掘
一、核心优势拆解(1)数学能力与数据分析对应关系数学课程数据分析应用场景比较优势说明概率论假设检验设计能准确判断统计显著性阈值实变函数数据质量评估异常值检测的严格性更高线性代数特征工程构建矩阵运算优化模型训练效率(2)典型优势案例金融风控场景:数学背景者构建的违约预测模型AUC值平均高0.15用户画像分析:数学系毕业生提出的分层抽样方案降低30%调研成本二、技能补全路线图三、转型学习路径(1)阶段
- Day 20:奇异值SVD分解
Review上一节主要学习了几种特征选择的具体方法,包含:方差筛选皮尔逊相关系数筛选lasso筛选树模型重要性SHAP重要性递归特征消除REF其目的是为了从大量的特征中选择有效的的特征,去除冗余甚至是噪声的非必要特征,从而构建出高质量的数据集。Today今天由矩阵的SVD分解讲起,并引申到实际的数据处理应用中。SVDSVD(奇异值分解)是线性代数中的一个矩阵分解技术。对于任意实数矩阵A∈Rm×nA
- 【OpenCV-Python】——图像处理基础&读写及显示图像&读写及播放视频&灰度图/彩色图/图像通道操作、运算
柯宝最帅
OpenCV学习pythonopencv图像处理
目录前言:1、读并显示图像、写图像2、读并播放视频、写视频3、操作灰度图和彩色图、图像通道操作、运算总结:前言:在Python中,OpenCV使用NumPy数组存储图像,Numpy是使用Python进行数组计算的软件包,提供强大的N维数组对象,支持复杂的广播功能(数组运算),集成了C/C++和Fortran代码工具,支持线性代数、傅里叶变换和随机数等特性,还可作为通用数据的高效多维容器,如在Ope
- 2x2矩阵教程
2x2矩阵教程1.简介2x2矩阵是线性代数中的基本概念,用于表示二维线性变换。本教程将介绍如何使用C++实现2x2矩阵的基本运算,包括矩阵加减、乘法、行列式、逆矩阵等操作。2.代码实现2.1头文件(matrix2x2.h)#ifndefMATRIX2X2_H#defineMATRIX2X2_H#include#include#includenamespacemath{namespacelinear
- 学习人工智能开发的详细指南
Ws_
学习人工智能python
一、引言人工智能(AI)开发是一个充满挑战与机遇的领域,它融合了数学、计算机科学、统计学、认知科学等多个学科的知识。随着大数据、云计算和深度学习技术的快速发展,AI已经成为推动社会进步和产业升级的关键力量。本文将为初学者提供一份详细的学习指南,帮助大家逐步掌握AI开发的核心技能。二、基础知识准备数学基础:线性代数:理解向量、矩阵、线性变换等基本概念,掌握矩阵运算和特征值分解等技巧。概率论与统计学:
- 大学专业科普 | 计算智能、信息学与大数据
鸭鸭鸭进京赶烤
大数据
一、专业背景随着信息技术的飞速发展,数据的产生速度呈爆炸式增长,传统数据处理技术已经无法满足如此庞大的数据量和复杂的数据类型,大数据专业应运而生,旨在培养能够应对大数据挑战的专业人才。二、主要课程内容数学基础课程高等数学、概率论与数理统计、线性代数是大数据分析的核心数学基础,为数据处理、算法优化和模型构建提供必要的理论支持。计算机基础课程数据结构与算法、计算机网络、操作系统是大数据技术的重要支撑,
- 大学专业科普 | 人工智能、物联网和云计算技术
鸭鸭鸭进京赶烤
人工智能物联网云计算5G信号处理信息与通信网络
一、专业概述人工智能专业是一门融合计算机科学、数学、信息学等多学科知识的交叉学科。它旨在培养学生掌握人工智能领域的基本理论、方法和技能,以应对人工智能在各个领域的应用需求和发展挑战。二、主要课程基础课程:包括高等数学、线性代数、概率论与数理统计、离散数学等数学基础课程,为人工智能算法提供理论支撑;以及数据结构、算法设计与分析、计算机组成原理、操作系统、计算机网络等计算机科学基础课程,帮助学生理解人
- Matlab 数字图像 第二章 矩阵及其运算
肌肉猛1大序子
matlab矩阵开发语言图像处理
目录2.1矩阵的创建2.1.1直接输入:2.1.2载入外部数据文件2.1.3利用内置函数创建2.2矩阵的寻访2.2.1下标元素访问2.2.2访问单元素2.3矩阵的拼接2.3.1矩阵拼接符[]2.3.2函数2.4矩阵的运算2.4.1加减2.4.2乘除2.4.3乘方2.4.4按位运算2.4.5行列式与秩2.4.6逆与迹2.4.7矩阵的范数(?)2.4.8特征值和特征向量PS纯纯用来记笔记,要是有错随时
- 线性代数小述(三)
天宫风子
线性代数决策树机器学习
线性代数小述(三)byAmamiyaFuko此去经年返,安知胡不归?前言FU⭐️KO首先需要对上一篇的线性组合的概念做一个更正,然后是考虑行列式相关的内容。目录1.线性组合2.行列式-行列式运算的定义-拉普拉斯展开线性组合线性组合是对一个向量的分解。考虑一个二维空间,若某一向量与两个向量在同在该空间中,且这两个向量是线性无关的(不平行的),则必然有这个向量对于后两个向量的线性组合表示,如Av1ˇ+
- 【图像处理基石】如何入门大规模三维重建?
小米玄戒Andrew
图像处理基石深度学习人工智能三维重建大规模三维重建立体视觉大模型LLM
入门大规模三维重建需要从基础理论、核心技术到实践工具逐步深入,同时需关注该领域的经典工作和前沿进展。以下是分阶段的入门路径及值得重点学习的工作:一、基础理论与前置知识大规模三维重建的核心是从海量图像或传感器数据中恢复场景的三维结构,涉及计算机视觉、摄影测量、图形学、最优化等多个领域,需先掌握以下基础:数学基础线性代数:矩阵运算、特征值分解(用于相机姿态估计)、奇异值分解(SVD,用于基础矩阵求解)
- 2020年10月17日,panda出生的第558天
小妖怪潘达
今天麻麻有点情绪失控,把粑粑骂了一顿,因为感觉线性代数还是一塌糊涂,简直没办法面对考试,突然又看到了粑粑之前跟一个公司签的代理合同,气不打一处来,所以就对粑粑好凶好凶,好在粑粑并没有反抗,低眉顺眼的接受麻麻的狂风暴雨,答应麻麻提出的草率要求,麻麻居然不再生气,甚至还有一点内疚,麻麻知道粑粑为了我们将来,一直特别努力,可是如今的一切是好不容易得来的,麻麻战战兢兢,如履薄冰
- 【证明】对极几何:本质矩阵内在性质
Powerful_QI
slam线性代数矩阵
--这是目录--1.本质矩阵内在性质表述2.预备知识2.1线性代数基础2.1.1奇异值与特征值的关系2.1.2矩阵加减单位阵后特征值的变化2.2引理:一个常用的矩阵变换3.证明1.本质矩阵内在性质表述 本质矩阵(EssentialMatrix)EEE是一个3阶方阵,满足E=t∧RE=t^{\land}RE=t∧R其中RRR为旋转矩阵,ttt为平移量,t∧t^{\land}t∧运算定义如下(参考了
- 线性代数同济教材每一部分的现实意义
ZhuBin365
其它算法
一、行列式(Determinants)的现实意义:不仅仅是数字,而是“尺度”和“特性”行列式虽然计算结果是一个数值,但它绝不是一个孤立的数字,它在现实世界中代表着“尺度”和“特性”的重要信息:现实意义核心:“衡量变化的能力”和“判定系统特性”“尺度”:衡量体积/面积的缩放比例:在现实世界中,很多变换都会改变物体的形状和大小。行列式就像一个“尺度”,衡量了线性变换对面积(二维)或体积(三维及以上)的
- Python 用 NumPy 进行矩阵分解
Python用NumPy进行矩阵分解关键词:NumPy,矩阵分解,线性代数,奇异值分解,QR分解,LU分解,特征值分解摘要:本文将深入探讨使用NumPy进行矩阵分解的各种技术。我们将从基础的线性代数概念出发,详细讲解五种核心矩阵分解方法:LU分解、QR分解、奇异值分解(SVD)、特征值分解和Cholesky分解。每种方法都将配有数学原理说明、NumPy实现代码和实际应用案例。文章还将介绍矩阵分解在
- GNN--知识图谱(逐步贯通基础到项目实践)
峙峙峙
图神经网络知识图谱人工智能
原文仓库链接:知识图谱–贯通已有知识地图记录知识关系图谱和跨学科碰撞新启发知识图谱mermaid可能需要下载插件才能渲染线性代数神经网络深度学习框架硬件加速图论GNN框架交叉理解前向理解定义:前向理解:A–>B,A为B的基础铺垫知识,通过深入学习A对B有更好的理解01.LinearAlgebraforLinearLayerofNN从线性代数行列变换的角度看神经网络中的线性层线性代数矩阵乘法,可以理
- 机器学习的数学基础-线性代数
本文用于复习并记录机器学习中的相关数学基础,仅供学习参考。很多总结和例子来源于mml项目(mml-book.github.io)十分感谢这本书的作者,PS:这本书目前没有中文版。线性代数线性方程组矩阵矩阵的加法与乘法矩阵加法矩阵乘法单位矩阵与标量相乘逆与转置逆转置解决线性方程组特解与通解高斯消元法初级变换应用:“-1”trick应用:求逆总结-如何解决线性方程组?向量空间群向量空间向量子空间线性独
- reveiw of test --welcome www.1maitao.com
从0到1的技术进阶
数据结构算法出版网络生活
--welcomewww.1maitao.comA数学的复习:1.最好能在7月前开始,如果你基础不是很好,又想在数学多拿分的话。2.课本很重要,08和09的题已经充分说明了基础的重要性,最好在5——6月把两册高数书及例题过两遍,有个宏观的把握,拿到题,就知道是在考什么。3.参考书的选择:个人觉得李永乐那本复习全书更注重基础,更贴近这2年的考研风格。全书中线性代数那100多页讲得超好。4.复习进度:
- 线性代数在图像处理中的应用 --- 纳尼? 2D的高斯核可以通过1D的高斯核直接生成?(秩为1的矩阵)
松下J27
LinearAlgebra线性代数图像处理人工智能
二维高斯核,Rank秩等于一的矩阵之前,我在学习图像处理的时候,会经常用到Gaussianblur,也就是二维高斯低通滤波。当时用的都是Matlab中,现成的图像处理库。只需要输入sigma和kernelsize这些参数就行了,完全不需要考虑高斯核中的每个点长啥样。虽然教科书里面也会有一些配图,例如:直到后来,我学习高斯图像金字塔的时候发现,在别人的代码里面,他在生成二维高斯核的时候,并不是直接写
- 线性代数向量内积_向量的点积| 使用Python的线性代数
cumubi7453
python线性代数机器学习numpy算法
线性代数向量内积Prerequisite:LinearAlgebra|DefiningaVector先决条件:线性代数|定义向量Linearalgebraisthebranchofmathematicsconcerninglinearequationsbyusingvectorspacesandthroughmatrices.Inotherwords,avectorisamatrixinn-dim
- OpenGL: OpenGL+Qt实现介绍 (一)
程序员小马兰
OpenGL+Qt计算机视觉图形渲染前端
一、通过这个教程我们能学到什么?1、计算机图形学的基础知识。2、使用OpenGL在QT中进行编程。3、使用OpenGL做出一些很酷的效果。二、需要哪些预备知识?1、熟悉C++编程语言、Qt基本操作。2、数学基础知识(线性代数、几何、三角学)。三、为什么要学习OpenGL?各种三维图形引擎,原理都类似,几乎没什么差别,学好了OpenGL对Unity3D、虚幻引擎、OSG、webGL等的使用都会有巨大
- python数据分析scipy库安装与使用
范哥来了
python数据分析scipy
安装scipy库scipy是一个用于科学计算的Python库,它依赖于numpy。如果你还没有安装scipy,可以使用以下命令来安装:pipinstallscipy或者,如果你使用的是Anaconda环境,可以通过conda来安装:condainstallscipy使用scipy库scipy提供了许多用于科学计算的功能,包括统计、优化、积分、线性代数等。下面是一些常见的用法示例。1.导入scipy
- SciPy 安装使用教程
小奇JAVA面试
安装使用教程scipy
一、SciPy简介SciPy(ScientificPython)是基于NumPy的开源科学计算库,提供了数值积分、优化、信号处理、线性代数、统计分析等高级科学计算功能。它是构建Python科学计算生态系统的核心组件之一,常用于科研、工程、数据分析等领域。二、安装SciPy2.1使用pip安装(推荐)pipinstallscipy2.2使用Anaconda安装(科学计算推荐)condainstall
- 《高等代数》线性相关和线性无关无关典型例题
代码小白菜菜
高等代数笔记高等代数
说明:此文章用于本人复习巩固,如果也能帮到大家那就更加有意义了。注:1)一般情况下题目要求证明哪个向量组线性相关或线性无关就用线性相关和线性无关的定义将等式写出来,然后再用适当的方法进行求解。2)在这题中,利用了行列式有解无解和线性相关和线性无关的关系进行判断是线性相关还是线性无关。
- 线性相关和线性无关
我推是大富翁
线性代数线性代数
在线性代数中,线性相关和线性无关是刻画向量组性质的核心概念,以下是关于它们的重要结论总结:一、基本定义与核心判定线性相关的定义向量组{α1,α2,…,αm}\{\alpha_1,\alpha_2,\dots,\alpha_m\}{α1,α2,…,αm}线性相关,当且仅当存在不全为零的实数k1,k2,…,kmk_1,k_2,\dots,k_mk1,k2,…,km线性无关的定义向量组{α1,α2,…,
- 线性代数-第9篇:二次型与正定矩阵:优化问题的数学基础
程序员勇哥
人工智能(AI)线性代数人工智能大数据python
线性代数-第9篇:二次型与正定矩阵:优化问题的数学基础在人工智能、量化投资和大数据分析中,优化问题无处不在,比如机器学习的损失函数最小化、量化投资组合的风险最小化等。而二次型与正定矩阵作为线性代数中的重要概念,为解决这些优化问题提供了坚实的数学基础。本篇将深入解析它们的原理及其在实际场景中的关键应用。一、二次型:从向量到函数的桥梁1.定义与表达式二次型是一个关于向量x\mathbf{x}x的二次齐
- 爪形行列式
CyberMuse
算法
好的!我用一个具体的数值4阶“爪形”矩阵举例,配合一步一步推导,完整展示“列变换消元求行列式”的过程。---#例题计算行列式\[D=\begin{vmatrix}4&2&3&1\\6&5&0&0\\7&0&4&0\\8&0&0&3\end{vmatrix}.\]---#Step1:确认结构-第一行:\(a_0=4,b_1=2,b_2=3,b_3=1\);-从第二行开始主对角为\(a_1=5,a_2
- 矩阵的行列式和逆矩阵的行列式的关系
音程
数学矩阵线性代数
矩阵的行列式和它的逆矩阵的行列式之间有明确的数学关系。我们来详细解释这个关系。✅前提条件:要讨论逆矩阵的行列式,首先必须满足矩阵是可逆的(即:非奇异矩阵),也就是说:矩阵AAA是一个方阵(行数等于列数)且其行列式det(A)≠0\det(A)\neq0det(A)=0核心公式:设AAA是一个n×nn\timesnn×n的可逆矩阵,则其逆矩阵A−1A^{-1}A−1存在,并且满足以下关系:det
- 重排利器:行列式点过程(DPP)在推荐系统中的应用
Jay Kay
推荐算法数学建模推荐算法
在推荐系统的重排阶段,我们常面临结果同质化问题——精排结果相似物料扎堆,导致用户体验单调。行列式点过程(DeterminantalPointProcesses,DPP)通过数学建模相关性与多样性的平衡,成为解决该问题的经典方案。一、DPP的核心思想DPP将推荐列表视为一个点过程,其核心是计算子集出现的概率。给定候选集(Z)(精排输出的Top-N物料),DPP定义子集(Y\subseteqZ)出现的
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/