USACO / Longest Prefix最长前缀(DP)

描述

在生物学中,一些生物的结构是用包含其要素的大写字母序列来表示的。生物学家对于把长的序列分解成较短的序列(即元素)很感兴趣。

如果一个集合 P 中的元素可以通过串联(元素可以重复使用,相当于 Pascal 中的 “+” 运算符)组成一个序列 S ,那么我们认为序列 S 可以分解为 P 中的元素。元素不一定要全部出现(如下例中BBC就没有出现)。举个例子,序列 ABABACABAAB 可以分解为下面集合中的元素:

{A, AB, BA, CA, BBC}

序列 S 的前面 K 个字符称作 S 中长度为 K 的前缀。设计一个程序,输入一个元素集合以及一个大写字母序列 S ,设S'是序列S的最长前缀,使其可以分解为给出的集合P中的元素,求S'的长度K。

格式

PROGRAM NAME: prefix

INPUT FORMAT

输入数据的开头包括 1..200 个元素(长度为 1..10 )组成的集合,用连续的以空格分开的字符串表示。字母全部是大写,数据可能不止一行。元素集合结束的标志是一个只包含一个 “.” 的行。集合中的元素没有重复。接着是大写字母序列 S ,长度为 1..200,000 ,用一行或者多行的字符串来表示,每行不超过 76 个字符。换行符并不是序列 S 的一部分。

OUTPUT FORMAT

只有一行,输出一个整数,表示 S 符合条件的前缀的最大长度。

SAMPLE INPUT (file prefix.in)

A AB BA CA BBC

.

ABABACABAABC

SAMPLE OUTPUT (file prefix.out)

11
分析:
经典的DP题,很多种DP方法,可以用f[i]表示前i个能达到的最长前缀 f[i]:=max(f[j]+j-i) (0<=j<=i-1,i-j<=10,j=0 or f[j]<>0);   
而我自己想了另一种DP思路:
f[i]表示主串可不可以有长度为i的前缀。f[i]={对每一个几何元素,如果这个元素各位与主串该位置最后几个对应位相等,则f[i]=f[i-l],l是元素长度。枚举所有元素的情况用or连接(显然只要f[i]有一种情况可以是true就行)}例如主串AAABBABCCCCAB,当前扫描到i=4,即现在扫描到主串AAAB,假如现在又一个AB元素,那么f[i]=f[i-l]即,f[4]=f[2],也就是说只要AA时可以构成前缀,因为后面AB=AB,所以AAAB也可以构成前缀。
最后只要从后向前扫一遍看最大的可以有的长度。(即找最大的f[i]=true)
代码:(注意文件输出,本来一道很简单的题被输出搞了半天。。。。。。)

/*

LANG:C++

PROG:prefix

ID:138_3531

*/

#include <iostream>

#include <fstream>

#include <cstdio>





using namespace std;





ifstream fin("prefix.in");

ofstream fout("prefix.out");





string s[205];

string c;

string sa="";

int nums=0;

char f[3000000];

int strl;





void input()

{

    while(fin>>s[nums])

    {

        if (s[nums][0]=='.') break;

        nums++;

    }





    while(fin>>c)

    {

        sa=sa+c;

    }

    //cin>>sa;

    strl=sa.size();

}





void work()

{

    for (int i=0;i<strl;i++)

    {

        for (int j=0;j<nums;j++)

        {

            int l=s[j].size();

            if (i<l-1) continue;

            int ok=1;

            for (int k=0;k<l;k++)

                if (s[j][k]!=sa[i-(l-1-k)])

                {

                    ok=0;

                    break;

                }

            if (ok==1)

            {

                if (i<l) f[i]=1;

                else f[i]=f[i-l]||f[i];

                if (f[i]) break;

            }

        }

    }

    for (int i=strl;i>0;i--)

        if (f[i])

        {

            fout<<i+1<<endl;

            return;

        }

    fout<<0<<endl;

    return;

}





int main()

{

    input();

    work();

    return 0;

}

 

 

你可能感兴趣的:(USACO)