C++二分查找
C++算法:滑动窗口及双指针总结
C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频
Farmer John wishes to build a corral for his cows. Being finicky beasts, they demand that the corral be square and that the corral contain at least C (1 <= C <= 500) clover fields for afternoon treats. The corral’s edges must be parallel to the X,Y axes.
FJ’s land contains a total of N (C <= N <= 500) clover fields, each a block of size 1 x 1 and located at with its lower left corner at integer X and Y coordinates each in the range 1…10,000. Sometimes more than one clover field grows at the same location; such a field would have its location appear twice (or more) in the input. A corral surrounds a clover field if the field is entirely located inside the corral’s borders.
Help FJ by telling him the side length of the smallest square containing C clover fields.
Farmer John 希望为他的奶牛们建立一个畜栏。
这些挑剔的奶牛要求畜栏必须是正方形的,而且至少要包含 C C C 片三叶草,来当做它们的下午茶。
约翰的土地里一共包含 N N N 片三叶草,每单位三叶草位于一个 1 × 1 1\times 1 1×1 的土地区域内。坐标都为整数,范围在 1 1 1 到 10000 10000 10000 以内。
多片的三叶草可能会位于同一个 1 × 1 1\times 1 1×1 的区域内,所以在输入内,同一个区域坐标可能出现多次。
请你帮 Farmer John 计算一下,在能包含至少 C C C 片三叶草的情况下,畜栏的最小边长是多少。
1 ≤ C ≤ N ≤ 500 1\le C\le N\le 500 1≤C≤N≤500。
Line 1: Two space-separated integers: C and N
Lines 2…N+1: Each line contains two space-separated integers that are the X,Y coordinates of a clover field.
Line 1: A single line with a single integer that is length of one edge of the minimum size square that contains at least C clover fields.
3 4
1 2
2 1
4 1
5 2
4
Explanation of the sample:
|* *
| * *
+------
Below is one 4x4 solution (C’s show most of the corral’s area); many others exist.
|CCCC
|CCCC
|*CCC*
|C*C*
+------
令M是三叶草的最大坐标,本题是10000。
** 性质一**:本题坐标无限大,假定右下是正方向,如果正方形左上角是(l,t)则正方向的第l列和t行,必定有三叶草,否则l++或t++。
离散后,二维前缀和O(NN)。
二分首端:任意边长mid的正方向包括的三叶草数量大于等于C。
**时间复杂度:O(NNlogMlogn)可能超时。
二分边长:O(logM)
枚举左上角:O(NN)
二分右下角:O(logn)
用滑动窗口,处理右下角。时间复杂度:O(1)。故总时间复杂度:O(nnlogM)
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
template<class T1, class T2>
std::istream& operator >> (std::istream& in, pair<T1, T2>& pr) {
in >> pr.first >> pr.second;
return in;
}
template<class T1, class T2, class T3 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3>& t) {
in >> get<0>(t) >> get<1>(t) >> get<2>(t) ;
return in;
}
template<class T1, class T2, class T3, class T4 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4>& t) {
in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t);
return in;
}
template<class T = int>
vector<T> Read() {
int n;
scanf("%d", &n);
vector<T> ret(n);
for(int i=0;i < n ;i++) {
cin >> ret[i];
}
return ret;
}
template<class T = int>
vector<T> Read(int n) {
vector<T> ret(n);
for (int i = 0; i < n; i++) {
cin >> ret[i];
}
return ret;
}
template<int N = 12 * 1'000'000>
class COutBuff
{
public:
COutBuff() {
m_p = puffer;
}
template<class T>
void write(T x) {
int num[28], sp = 0;
if (x < 0)
*m_p++ = '-', x = -x;
if (!x)
*m_p++ = 48;
while (x)
num[++sp] = x % 10, x /= 10;
while (sp)
*m_p++ = num[sp--] + 48;
}
inline void write(char ch)
{
*m_p++ = ch;
}
inline void ToFile() {
fwrite(puffer, 1, m_p - puffer, stdout);
}
private:
char puffer[N], * m_p;
};
template<int N = 12 * 1'000'000>
class CInBuff
{
public:
inline CInBuff() {
fread(buffer, 1, N, stdin);
}
inline int Read() {
int x(0), f(0);
while (!isdigit(*S))
f |= (*S++ == '-');
while (isdigit(*S))
x = (x << 1) + (x << 3) + (*S++ ^ 48);
return f ? -x : x;
}
private:
char buffer[N], * S = buffer;
};
template<class TSave, class TRecord >
class CRangUpdateLineTree
{
protected:
virtual void OnQuery(const TSave& save, const int& iSaveLeft, const int& iSaveRight) = 0;
virtual void OnUpdate(TSave& save, const int& iSaveLeft, const int& iSaveRight, const TRecord& update) = 0;
virtual void OnUpdateParent(TSave& par, const TSave& left, const TSave& r, const int& iSaveLeft, const int& iSaveRight) = 0;
virtual void OnUpdateRecord(TRecord& old, const TRecord& newRecord) = 0;
};
template<class TSave, class TRecord >
class CVectorRangeUpdateLineTree : public CRangUpdateLineTree<TSave, TRecord>
{
public:
CVectorRangeUpdateLineTree(int iEleSize, TSave tDefault, TRecord tRecordNull) :m_iEleSize(iEleSize)
, m_save(iEleSize * 4, tDefault), m_record(iEleSize * 4, tRecordNull) {
m_recordNull = tRecordNull;
}
void Update(int iLeftIndex, int iRightIndex, TRecord value)
{
Update(1, 0, m_iEleSize - 1, iLeftIndex, iRightIndex, value);
}
void Query(int leftIndex, int rightIndex) {
Query(1, 0, m_iEleSize - 1, leftIndex, rightIndex);
}
//void Init() {
// Init(1, 0, m_iEleSize - 1);
//}
TSave QueryAll() {
return m_save[1];
}
void swap(CVectorRangeUpdateLineTree<TSave, TRecord>& other) {
m_save.swap(other.m_save);
m_record.swap(other.m_record);
std::swap(m_recordNull, other.m_recordNull);
assert(m_iEleSize == other.m_iEleSize);
}
protected:
//void Init(int iNodeNO, int iSaveLeft, int iSaveRight)
//{
// if (iSaveLeft == iSaveRight) {
// this->OnInit(m_save[iNodeNO], iSaveLeft);
// return;
// }
// const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
// Init(iNodeNO * 2, iSaveLeft, mid);
// Init(iNodeNO * 2 + 1, mid + 1, iSaveRight);
// this->OnUpdateParent(m_save[iNodeNO], m_save[iNodeNO * 2], m_save[iNodeNO * 2 + 1], iSaveLeft, iSaveRight);
//}
void Query(int iNodeNO, int iSaveLeft, int iSaveRight, int iQueryLeft, int iQueryRight) {
if ((iSaveLeft >= iQueryLeft) && (iSaveRight <= iQueryRight)) {
this->OnQuery(m_save[iNodeNO], iSaveLeft, iSaveRight);
return;
}
if (iSaveLeft == iSaveRight) {//没有子节点
return;
}
Fresh(iNodeNO, iSaveLeft, iSaveRight);
const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
if (mid >= iQueryLeft) {
Query(iNodeNO * 2, iSaveLeft, mid, iQueryLeft, iQueryRight);
}
if (mid + 1 <= iQueryRight) {
Query(iNodeNO * 2 + 1, mid + 1, iSaveRight, iQueryLeft, iQueryRight);
}
}
void Update(int iNode, int iSaveLeft, int iSaveRight, int iOpeLeft, int iOpeRight, TRecord value)
{
if ((iOpeLeft <= iSaveLeft) && (iOpeRight >= iSaveRight))
{
this->OnUpdate(m_save[iNode], iSaveLeft, iSaveRight, value);
this->OnUpdateRecord(m_record[iNode], value);
return;
}
if (iSaveLeft == iSaveRight) {
return;//没有子节点
}
Fresh(iNode, iSaveLeft, iSaveRight);
const int iMid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
if (iMid >= iOpeLeft)
{
Update(iNode * 2, iSaveLeft, iMid, iOpeLeft, iOpeRight, value);
}
if (iMid + 1 <= iOpeRight)
{
Update(iNode * 2 + 1, iMid + 1, iSaveRight, iOpeLeft, iOpeRight, value);
}
// 如果有后代,至少两个后代
this->OnUpdateParent(m_save[iNode], m_save[iNode * 2], m_save[iNode * 2 + 1], iSaveLeft, iSaveRight);
}
void Fresh(int iNode, int iDataLeft, int iDataRight)
{
if (m_recordNull == m_record[iNode])
{
return;
}
const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;
Update(iNode * 2, iDataLeft, iMid, iDataLeft, iMid, m_record[iNode]);
Update(iNode * 2 + 1, iMid + 1, iDataRight, iMid + 1, iDataRight, m_record[iNode]);
m_record[iNode] = m_recordNull;
}
vector<TSave> m_save;
vector<TRecord> m_record;
TRecord m_recordNull;
const int m_iEleSize;
};
template<class T = int>
class CDiscretize //离散化
{
public:
CDiscretize(vector<T> nums)
{
sort(nums.begin(), nums.end());
nums.erase(std::unique(nums.begin(), nums.end()), nums.end());
m_nums = nums;
for (int i = 0; i < nums.size(); i++)
{
m_mValueToIndex[nums[i]] = i;
}
}
int operator[](const T value)const
{
auto it = m_mValueToIndex.find(value);
if (m_mValueToIndex.end() == it)
{
return -1;
}
return it->second;
}
int size()const
{
return m_mValueToIndex.size();
}
vector<T> m_nums;
protected:
unordered_map<T, int> m_mValueToIndex;
};
template<class T = int>
class CPreSum2 {
public:
template<class _Pr>
CPreSum2(int rowCnt, int colCount, _Pr pr) :m_iRowCnt(rowCnt), m_iColCnt(colCount) {
m_vSum.assign(rowCnt + 1, vector<int>(colCount + 1));
for (int r = 0; r < rowCnt; r++) {
for (int c = 0; c < colCount; c++) {
m_vSum[r + 1][c + 1] = m_vSum[r][c + 1] + m_vSum[r + 1][c] - m_vSum[r][c] + pr(r, c);
}
}
}
T Get(int left, int top, int right, int bottom)const {
return m_vSum[bottom + 1][right + 1] - m_vSum[top][right + 1] - m_vSum[bottom + 1][left] + m_vSum[top][left];
}
T GetTopLeft(int bottom, int right) { return m_vSum[bottom + 1][right + 1]; }
T GetBottomRight(int top, int left) { return Get(left, top, m_iColCnt - 1, m_iRowCnt - 1); }
vector<vector<T>> m_vSum;
const int m_iRowCnt, m_iColCnt;
};
template<class INDEX_TYPE>
class CBinarySearch
{
public:
CBinarySearch(INDEX_TYPE iMinIndex, INDEX_TYPE iMaxIndex, INDEX_TYPE tol = 1) :m_iMin(iMinIndex), m_iMax(iMaxIndex), m_iTol(tol) {}
template<class _Pr>
INDEX_TYPE FindFrist(_Pr pr)
{
auto left = m_iMin - m_iTol;
auto rightInclue = m_iMax;
while (rightInclue - left > m_iTol)
{
const auto mid = left + (rightInclue - left) / 2;
if (pr(mid))
{
rightInclue = mid;
}
else
{
left = mid;
}
}
return rightInclue;
}
template<class _Pr>
INDEX_TYPE FindEnd(_Pr pr)
{
INDEX_TYPE leftInclude = m_iMin;
INDEX_TYPE right = m_iMax + m_iTol;
while (right - leftInclude > m_iTol)
{
const auto mid = leftInclude + (right - leftInclude) / 2;
if (pr(mid))
{
leftInclude = mid;
}
else
{
right = mid;
}
}
return leftInclude;
}
protected:
const INDEX_TYPE m_iMin, m_iMax, m_iTol;
};
class Solution {
public:
int Ans(const int Need, vector<pair<int, int>>& cr) {
const int N = cr.size();
vector<int> cs, rs;
for (const auto& [c, r] : cr) {
cs.emplace_back(c);
rs.emplace_back(r);
}
CDiscretize<int> cdis(cs), rdis(rs);
const int R = rdis.size(), C = cdis.size();
vector<vector<int>> pts(R, vector<int>(C));
for (const auto& [c, r] : cr) {
pts[rdis[r]][cdis[c]]++;
}
CPreSum2 preSum(R, C, [&](const int r, const int c) {return pts[r][c]; });
auto Check = [&](int mid) {
for (int r = 0, r1 = 0; r < R; r++) {
while ((r1 + 1 < R) && (rdis.m_nums[r1 + 1] - rdis.m_nums[r] + 1 <= mid))
{
r1++;
}
for (int c = 0, c1 = 0; c < C; c++) {
while ((c1 + 1 < C) && (cdis.m_nums[c1 + 1] - cdis.m_nums[c] + 1 <= mid)) {
c1++;
}
if (preSum.Get(c, r, c1, r1) >= Need) { return true; }
}
}
return false;
};
return CBinarySearch<int>(1, 10'000).FindFrist(Check);
}
};
int main() {
#ifdef _DEBUG
freopen("a.in", "r", stdin);
#endif // DEBUG
int C;
cin >> C;
auto xy = Read<pair<int,int>>();
auto res = Solution().Ans(C,xy);
cout << res;
#ifdef _DEBUG
//printf(",n=%d,", n);
Out(xy, "xy=");
#endif // DEBUG
return 0;
}
vector<pair<int, int>> xy;
TEST_METHOD(TestMethod11)
{
xy = { {1,2},{2,1},{4,1},{5,2} };
auto res = Solution().Ans(3,xy);
AssertEx(4, res);
}
我想对大家说的话 |
---|
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。 |
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作 |
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注 |
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
失败+反思=成功 成功+反思=成功 |
先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。