- Gray Code 格雷码
YouQian772
数学递归训练赛算法
题目描述AGraycodeisalistofall2^nbitstringsoflengthn,whereanytwosuccessivestringsdifferinexactlyonebit(i.e.,theirHammingdistanceisone).YourtaskistocreateaGraycodeforagivenlengthn.输入Theonlyinputlinehasanint
- Python hamming distance汉明距离算法详解及源码
猿来如此yyy
Python算法详解及源码算法python数据库人工智能服务器前端
Hamming距离是一种用于比较两个等长字符串之间的差异的度量方法。它被定义为两个字符串对应位置上不同字符的个数。换言之,它衡量的是将一个字符串变成另一个字符串所需要进行的最小替换操作次数。Hamming距离算法的优点包括:简单易实现:只需要比较字符串对应位置上的字符是否相同即可,算法逻辑较为简单。高效:算法的时间复杂度为O(n),其中n为字符串的长度。Hamming距离算法的缺点包括:只适用于等
- javaScript实现一个倒计时功能
isSunny
直接撸代码:functioncountDown(time,id){varstartTime=newDate();varendTime=newDate(time);vardistance=endTime.getTime()-startTime.getTime();varday=0;varhour=0;varminute=0;varsecond=0;if(distance>=0){day=Math.f
- RAG、Function Call、MCP技术笔记
大佐不会说日语~
面试笔记篇笔记
核心概念理解这三种技术都是为了增强大模型能力的重要手段,但各有侧重点和应用场景。RAG(检索增强生成)RAG本质上是为大模型外接一个动态知识库。当模型需要回答问题时,先从知识库中检索相关信息,再结合检索结果生成答案。核心原理:将文档内容进行向量化存储(通常使用Embedding模型)用户提问时,将问题也向量化通过相似度计算(如欧氏距离、余弦相似度)找到最相关的文档片段将检索到的内容作为上下文传给大
- RAG面试内容整理-3. 向量检索原理与常用库(ANN、FAISS、Milvus 等)
不务正业的猿
面试LangChainAI面试职场和发展大模型RAGAI人工智能算法
向量检索利用向量空间的相似度来查找相关内容,是近年来兴起的检索技术核心。其基础是在语义嵌入(embedding)模型的支持下,将文本、图像等数据表示为高维向量,以便通过向量相似度(如余弦相似度或欧氏距离)找到内容上的邻近项。由于直接精确计算所有向量之间的距离在大规模下计算开销巨大,实际系统通常采用近似最近邻搜索(ApproximateNearestNeighbor,ANN)算法,在保证结果精度接近
- 机器学习之KNN算法:鸢尾花案例
进阶到入土
机器学习算法人工智能
一、KNN算法(又称近邻算法)核心思想:若一个样本在特征空间中有k个相似的样本且其中大多数同属于某一类别,那么这个样本也属于该类别。大白话版:我在什么地方,问我附近邻居二、相似性的判断那么如何判断哪些算是近邻?我们采用距离指标来进行衡量。常见的距离指标有:欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离。其中欧氏距离最为常用。①欧氏距离欧氏距离就是指两点空间上的距离,该方法的公式相信很多人都比较
- Day 17: 常见的聚类算法
聚类算法聚类算法是一种无监督学习技术,用于将数据集中的相似对象分组到不同的类别(称为“簇”)中,而不需要预先定义的标签。其核心目标是:同一簇内的数据点尽可能相似(高内聚性),不同簇之间的数据点尽可能不同(高分离性)。聚类广泛应用于数据挖掘、模式识别、图像处理等领域,如客户细分、文档分类或异常检测。聚类算法的基本原理聚类依赖于相似度度量(如欧氏距离)来评估数据点之间的接近程度。假设数据集包含nnn个
- python作业
陈小铃子
python开发语言
基础练习练习目标函数01.计算车费题目描述小红打车,起步价8元(3公里),每公里收费2元,她打车行驶了n公里,通过函数封装并计算车费输入描述输入一个公里数输出描述输出应付车费示例输入:5输出:12defcalculate_fare(distance):base_price=8#起步价per_km_cost=2#每公里费用min_distance=3#最小计费距离ifdistance0:sum_nu
- The Network Link Layer : AODV Ad hoc按需距离矢量路由协议
Fine姐
Sensor传感器嵌入式硬件
AODVAdhoc按需距离矢量路由协议AODV设计缘由AODV机制AODV实现过程S->DRR阶段RRp阶段RoutinginformationinAODVAODV中的路由信息本地路由修复(Fixingrouteslocally)背景知识示例本地修复步骤AODV(AdHocOn-demandDistanceVectorRouting按需距离矢量路由协议)AODV是一种用于无线自组织网络的按需路由协
- LeetCode 72. 编辑距离(Edit Distance)| 动态规划详解
72.编辑距离题目描述给你两个单词word1和word2,请计算将word1转换为word2所需的最少操作数。你可以对一个单词进行以下三种操作:插入一个字符删除一个字符替换一个字符✅示例输入:word1="horse",word2="ros"输出:3解释:horse->rorse(替换h为r)rorse->rose(删除r)rose->ros(删除e)解题思路:动态规划(DP)✅状态定义dp[i]
- 机器视觉通用平台之点轮廓距离算法工具类
小治视觉
c#算法visualstudiowindowsui
usingCvBase;usingCWindowTool;usingHalconDotNet;usingSystem;usingSystem.Collections.Generic;usingSystem.IO;usingSystem.Linq;usingSystem.Text;usingSystem.Threading.Tasks;namespaceCvImageTool.DistancePC{
- K近邻算法【python】【sklearn】
weixin_44985842
python近邻算法sklearn
0定义K近邻算法(K-NearestNeighbors,KNN)是一种基于实例的监督学习算法,主要用于分类和回归任务。其核心思想是:在特征空间中,对于待预测的样本,找到与其距离最近的k个已知样本(“邻居”),根据这k个邻居的类别(分类任务)或属性值(回归任务)来决定该样本的预测结果,,常用欧氏距离公式:对于两个n维样本点xi=(xi1,xi2,...,xin)x_i=(x_{i1},x_{i2},
- 动态时间规整(Dynamic Time Warping,DTW)介绍
EmorZhong
机器学习人工智能深度学习数据结构算法
在时序数据分析中,动态时间规整(DynamicTimeWarping,DTW)是一种经典的用于度量两个时间序列相似度的算法。它的核心价值在于解决了传统距离度量(如欧氏距离)在处理时间序列时的局限性——尤其是当序列存在时间错位(如节奏快慢不同)或长度差异时,仍能准确捕捉它们的“形状相似性”。一、为什么需要DTW?传统的距离度量(如欧氏距离)要求两个时间序列必须长度相同且时间点严格对齐。但实际场景中,
- OpenCV实战之二 | 基于哈希算法比较图像的相似性
w94ghz
OpenCV实战笔记opencv哈希算法人工智能
前言☘️本章节主要介绍常用的图像相似性评价算法:图像哈希算法。图像哈希算法通过获取图像的哈希值并比较两幅图像的哈希值的汉明距离来衡量两幅图像是否相似。两幅图像越相似,其哈希值的汉明距离越小。图像哈希算法可以用于图片检索,重复图片剔除,以图搜图以及图片相似度比较。目录一、汉明距离二、img_hash模块三、哈希算法哈希算法实现步骤:代码实现一、汉明距离汉明距离(HammingDistance)是用于
- 字符串的模糊匹配方法介绍
超级土豆粉
前端javascripttypescripthtml
字符串的模糊匹配方法介绍目录字符串的模糊匹配方法介绍一、编辑距离(LevenshteinDistance)复杂度分析二、Jaro-Winkler距离复杂度分析三、最长公共子序列(LCS)复杂度分析四、模糊搜索(FuzzySearch)复杂度分析五、正则表达式复杂度分析六、第三方库复杂度分析总结在日常开发和数据处理中,我们经常会遇到需要判断两个字符串是否“相似”或“接近”的场景,这时就需要用到字符串
- 机器学习知识点复习 上(保研、复试、面试)百面机器学习笔记
机器学习知识点复习上一、特征工程1.为什么需要对数值类型的特征做归一化?2.文本表示模型3.图像数据不足的处理方法二、模型评估1.常见的评估指标2.ROC曲线3.为什么在一些场景中要使用余弦相似度而不是欧氏距离?4.过拟合和欠拟合三、经典算法1.支持向量机SVM2.逻辑回归3.决策树四、降维1.主成分分析(PrinalComponentsAnalysis,PCA)降维中最经典的方法2.线性判别分析
- leedCode:地图分析
卖报的火柴人
算法java
题目:你现在手里有一份大小为nxn的网格grid,上面的每个单元格都用0和1标记好了。其中0代表海洋,1代表陆地。请你找出一个海洋单元格,这个海洋单元格到离它最近的陆地单元格的距离是最大的,并返回该距离。如果网格上只有陆地或者海洋,请返回-1。我们这里说的距离是「曼哈顿距离」(ManhattanDistance):(x0,y0)和(x1,y1)这两个单元格之间的距离是|x0-x1|+|y0-y1|
- ROS常用的路径规划算法介绍
Xian-HHappy
机器人-Robot算法机器人路径规划ROS
在ROS中,常用的路径规划算法主要有以下几种:全局路径规划算法A*算法:在Dijkstra算法基础上加入启发式函数,如曼哈顿距离或欧氏距离,优先探索靠近目标的节点,效率更高。需使用可容许的启发式函数以保证最优性,其通过配置启发式权重可平衡最优性与速度。在ROS中,nav2_planner中的SmacPlanner支持2D/3D的A*算法。Dijkstra算法:代价地图中的基础路径搜索方法,采用广度
- Python_计算两个省市之间的直线距离_2506
夏天里的肥宅水
PYTHONpythonspring开发语言
更新代码上一版链接importpandasaspdimporttimeimportpickleimportosimportsysfromgeopy.geocodersimportNominatimfromgeopy.distanceimportgeodesicfromtqdmimporttqdm#ConfigurationINPUT_FILE=r"距离.xlsx"#输入文件路径OUTPUT_FIL
- Python图形界面 Tkinter入门7 api数据处理
mango大侠
Pythonpythontkinter
天气api接口数据#https://docs.airnowapi.org/CurrentObservationsByZip/query#URL:https://www.airnowapi.org/aq/observation/zipCode/current/?format=application/json&zipCode=20002&distance=25&API_KEY=D06DAD8A-93E
- opencv实现点到region最小距离,distance_pr
isyoungboy
opencv人工智能计算机视觉
distance_pr的算子很快使用opencv模仿实现一下halcon的region使用rle编码,还有可能使用凸包优化,simd,二分查找,多线程计算,这里只实现基础的功能#include#include#include#include//结构体表示RLE编码的区域点structRLEPoint{inty;intx_start;intx_end;};//从二值图像生成RLE编码的区域表示std
- YOLOv11 改进策略:利用 MPDIoU 增强边界框回归的准确性
鱼弦
YOLO实践与改进YOLO人工智能
YOLOv11改进策略:利用MPDIoU增强边界框回归的准确性引言目标检测中的边界框回归质量直接影响模型的检测精度,特别是在复杂背景和多尺度目标场景下。传统的IoU(IntersectionoverUnion)损失在处理重叠较少的情况时效果欠佳,而MPDIoU(Multi-PerspectiveDistance-IoU)作为一种改进方法,通过综合考虑多个角度的距离测量,能够更有效地优化边界框位置。
- 机器学习算法_聚类KMeans算法
TY-2025
机器学习机器学习算法聚类
一、聚类算法分析1.概念概念:根据样本之间的相似性,将样本划分到不同的类别中;不同的相似度的计算方法,会得到不同的聚类结果,常见的相似度计算方法有欧氏距离法(无监督算法)聚类算法的目的是在没有先验知识的情况下,自动发现数据集中的内在结构和模式2.聚类算法分类(1)根据聚类颗粒度分类个数比较多的,细聚类;个数比较多的,粗聚类(2)根据实现方法分类K-means:按照质心分类层次聚类:对数据进行逐层划
- 为什么像 “仓库” 而非 “工厂”?
为什么像“仓库”而非“工厂”?核心功能:工厂:生产新产品(如汽车、手机)。仓库:存储和快速检索已有物品(如按编号查找箱子)。IndexFlatL2的作用是存储高维向量并快速找到相似向量,更接近仓库的“存储+检索”功能。类比细节:仓库概念FAISS索引对应仓库空间内存中分配的向量存储空间货架编号系统向量索引结构(基于欧氏距离)物品入库index.add(vectors)按编号快速查找箱子index.
- 京东最新web滑块 wasm分析
wx a15018601872
wasm京东jdcfe滑块京东滑块京东验证码python
声明本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关!部分python代码data=cp.call('verify',st,sid,imgStr,distance)headers={"Host":"jcap.m.jd.com","pragma":"no-cache","cache-co
- 深入解析 FID:深度学习生成模型评价指标
阿正的梦工坊
DeepLearning深度学习人工智能
深入解析FID:深度学习生成模型评价指标前言在生成模型的研究中,如何客观、准确地评估生成图像的质量一直是深度学习领域的重要课题。传统的指标如均方误差(MSE)或峰值信噪比(PSNR)在图像生成任务中往往难以捕捉人类感知上的质量差异。因此,研究者们提出了多种更贴近视觉感知的评价方法,其中FréchetInceptionDistance(FID)因其鲁棒性和广泛适用性,成为当前生成模型评估的主流指标之
- 代码查重基于编辑距离
alasnot
c++
#define_CRT_SECURE_NO_WARNINGS#defineENDSIGN""#defineENDSIGNS"\n"#include#include#include#include#defineN200#defineMAXLEN3600#defineKEYLEN20#defineNumofnode50#definethreshold.95/*字符串编辑距离(EditDistance)
- proteus仿真-单片机-超声波测距报警
Rose_yj
proteus超声波测距报警单片机proteus嵌入式硬件
一、需求1、用HCSR04超声波传感器测量距离,测量范围0~170cm,精确到小数点后一位。2、用LCD1602显示测量到的距离:显示屏第一行显示“distance:***.*cm”。3、当距离大于120cm时,绿色LED灯亮;当距离在50-120cm之间,蜂鸣器间断发声“滴滴滴”提示,黄色LED灯亮。当距离低于50cm时,蜂鸣器持续报警,红色LED灯亮,并在LCD1602第二行显示“warnin
- GAN生成模型评价体系:从主观感知到客观度量的技术演进
青柚MATLAB学习
对抗网络生成对抗网络GAN评价指标WassFIDInceptionScore
摘要本文系统解析生成对抗网络(GAN)的评价方法体系。首先指出主观评价在人力成本、过拟合误判等方面的局限性,随后依次介绍InceptionScore、ModeScore等经典客观指标的原理与公式,对比KernelMMD、WassersteinDistance等分布度量方法的优劣,最后阐述FID、1-NN分类器等高效评价工具的应用场景。本文结合公式推导与实验结论,为GAN性能评估提供理论与实践指南。
- Leetcode45. 跳跃游戏 II -hot100-代码随想录
meeiuliuus
#leetcode---medium算法
目录题目:代码(首刷看解析2024年2月15日):代码(二刷自解2024年3月9日贪心8min)代码(三刷看解析2024年6月11日go)题目:代码(首刷看解析2024年2月15日):classSolution{public:intjump(vector&nums){if(nums.size()==1)return0;intres=0;intcurDistance=0;intnextDistanc
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri