- 【图像去噪】论文精读:Noise2Self: Blind Denoising by Self-Supervision(N2S)
十小大
计算机视觉深度学习图像处理图像去噪人工智能论文阅读论文笔记
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言Abstract1.Introduction2.RelatedWork3.CalibratingTraditionalModels3.1.Single-Cell3.2
- VIT视觉
妄想成为master
opencv目标检测机器学习数据挖掘语音识别人工智能计算机视觉
VisionTransformer视觉和语言(Vision-Language)NLPrompt:Noise-LabelPromptLearningforVision-LanguageModelsPaper:https://arxiv.org/abs/2412.01256Code:GitHub-qunovo/NLPromptPhysVLM:EnablingVisualLanguageModelsto
- 基于MATLAB平台设计并实现自适应噪声抵消器(Adaptive Noise Canceller, ANC)
AI Dog
自动控制matlab自适应噪声抵消器ANC信号去噪
本课题旨在基于MATLAB平台设计并实现自适应噪声抵消器(AdaptiveNoiseCanceller,ANC),以有效去除信号中的背景噪声,提升语音、医疗或通信系统中的信噪比。系统采用自适应滤波算法,如最小均方误差(LMS)或归一化LMS(NLMS)算法,通过参考噪声信号估计并抵消主通道信号中的噪声成分,实现动态降噪。研究内容包括信号采集与仿真建模、自适应滤波器结构设计、算法参数调整及降噪性能评
- ISP Pipeline(4): Anti Aliasing Noise Filter 抗锯齿与降噪滤波器
andwhataboutit?
接口隔离原则
上一篇文章讲的是:ISPPipeline(3):LensShadingCorrection镜头阴影校正-CSDN博客视频:(5)AntiAliasingNoiseFilter|ImageSignalProcessingPipelineTutorialSeries源码:ISPPipeline(3):LensShadingCorrection镜头阴影校正-CSDN博客Anti-AliasingNois
- 人脸识别常用数据集和Loss
JL_Jessie
人脸识别深度学习
人脸识别数据集数据集的noise对训练效果的影响很大!很长一段时间MegaFace的效果都上不去,就是因为数据集噪声的原因。而且自己在训练人脸的时候,如果不对数据集的噪声和属性有一点了解,对训练结果可能会有误判,甚至越训练越差…在选择数据集的时候不要一味求大,有的时候选择一个noise比例极高的大数据集,效果还不如选择一个clean的小数据集呢,可以参见这篇论文TheDevilofFaceReco
- open3d 点云拟合圆 mesh
扶子
python点云处理numpypythonopen3d经验分享点云拟合圆mesh
1、功能介绍:使用numpy和open3d进行二维圆拟合与三维可视化的完整示例。主要功能是对带有噪声的二维点云数据进行最小二乘法圆拟合,并使用open3d创建三角网格来可视化拟合出的圆形区域。2、代码部分:importnumpyasnpimportopen3daso3d#参数设置radius=5.0#圆的半径center=[0,0]#圆心num_points=200#点的数量noise_level
- Python编程:ISP中降噪(Noise Reduction)
倔强老吕
python接口隔离原则计算机视觉
降噪(NoiseReduction)是相机ISP(图像信号处理器)中的关键步骤,旨在消除或减弱图像中的噪声,同时尽可能保留细节。噪声可能来源于传感器(如暗电流噪声、读出噪声)、信号放大(增益噪声)或环境光线不足(光子散粒噪声)。噪声产生的原因(1)传感器噪声(SensorNoise)噪声主要来源于图像传感器的物理特性,包括:①光子噪声(PhotonNoise/ShotNoise)原因:光子到达传感
- Noise噪音halcon算子,持续更新
小邢同学
#Halcon算子解读
目录add_noise_distributionadd_noise_whitegauss_distributionnoise_distribution_meansp_distributionadd_noise_distribution功能:向一个图像添加噪声。add_noise_white功能:向一个图像添加噪声。gauss_distribution功能:产生一个高斯噪声分布。noise_dist
- 论文略读:The Power of Noise: Redefining Retrieval for RAG Systems
UQI-LIUWJ
论文笔记人工智能
省流:在RAG中,噪声文档不仅没有对系统性能造成负面影响,反而能够显著提高系统的准确性1检索文档类型分类相关文档包含直接与查询相关的信息,提供直接回答或解释查询的标准数据。相关但不包含答案文档虽然没有直接回答查询,但在语义上或背景上与主题相关联。例如,如果有人问拿破仑的马的颜色,一份表述拿破仑妻子马的颜色的文档,虽然不包含正确信息,但与之高度相关。不相关文档与查询无关,代表了检索过程中的一种信息噪
- 【业务框架】3C-相机-Cinemachine
黄培龙
业务框架unityunity
概述插件,做相机需求,等于相机老师傅多年经验总结的工具FeatureTransform:略ControlCamera:控制相机参数Noise:增加随机性Blend:CameraBrain的混合列表指定一个虚拟相机到另一个相机的过渡,这个过程是自动的,CameraBrain在做虚拟相机切换的时候调用指定的设置做混合多相机协作:把多个虚拟相机合并成一个,或者根据需要选择最适配的某个拓展虚拟相机:继承C
- 【图像去噪】论文精读:Noise2Fast: Fast Self-Supervised Single Image Blind Denoising(N2F)
十小大
计算机视觉人工智能深度学习图像去噪图像处理论文阅读论文笔记
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言AbstractMainTheoreticalBackgroundContributionandSignificanceRelatedWorkResultsConcl
- OpenCV 第7课 图像处理之平滑(二)
嵌入式老牛
树莓派之OpenCVopencv图像处理人工智能
1.示例代码importcv2importnumpyasnpimportmatplotlib.pyplotaspltimg=cv2.imread('noise.jpg')blur1=cv2.blur(img,(5,5)) blur2=cv2.GaussianBlur(img,(5,5),1) blur3=cv2.medianBlur(img,5) plt.figure(figsize=(10
- Nonlinear total variation based noise removal algorithms论文阅读
青铜锁00
论文阅读#退化论文阅读图像处理
Nonlineartotalvariationbasednoiseremovalalgorithms1.论文的研究目标与意义1.1研究目标1.2实际意义2.论文的创新方法与核心公式2.1总变差最小化模型2.1.1欧拉-拉格朗日方程2.1.2演化方程(梯度下降法)2.1.3数值离散化2.2与传统方法的对比3.实验设计与结果分析3.1实验设置3.2关键数据4.未来研究方向与挑战4.1学术挑战4.2技术
- Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise论文阅读
钟屿
论文阅读图像处理人工智能计算机视觉深度学习
冷扩散:无需噪声的任意图像变换反转摘要标准扩散模型通常涉及两个核心步骤:图像降质(添加高斯噪声)和图像恢复(去噪操作)。本文发现,扩散模型的生成能力并不强烈依赖于噪声的选择,而是可以通过改变降质过程构建一个更广泛的生成模型家族。即使使用完全确定性的降质操作(如模糊、遮蔽等),扩散模型的训练和测试规则仍可被推广,从而生成高质量图像。这一发现挑战了学界对扩散模型的传统认知——即依赖于梯度朗之万动力学或
- 平滑过滤值策略
量化金策
程序化交易策略pythonbeautifulsoupdash
该策略是一种基于技术分析的交易策略,主要通过计算一系列指标来判断市场趋势,并根据这些指标生成交易信号。策略概述该策略的核心在于利用多个技术指标来分析市场动态,并据此制定交易决策。它结合了价格动量、波动性和趋势跟踪等多种因素,旨在提高交易的准确性和效率。指标计算1.DIFF:计算前两根K线收盘价的绝对差值。这个指标用于衡量价格的短期波动。2.NOISE:计算DIFF的N1周期累加和。NOISE反映了
- chatTTS使用问题新生避雷
散发一叶舟
python
1.链接:gitclonehttps://github.com/2noise/ChatTTS.git2.遇到'nomalizer'问题,直接pipinstallnemo_text_processing,pynini,WeTextProcessing,这在linux无问题,windows有问题解决办法:在chatTTS里面的core.py:143行到149行注释掉:#ifdo_text_normal
- 3dmax 管子动画_3DMAX中模拟液体在管道流动动画是如何做的?
ayetony 清风
3dmax管子动画
回答:3DMax制作水流动的效果步骤方法1、选择box,执行create>geometry>compoundobjects>Boolean,点击PickOperandB按钮,然后选择cylinder,做成一个水槽的形状。2、在bumpmap通道中选择noise,bumpamount为30%,如下图设置参数。在reflection通道中选择falloff贴图,保留默认设置,reflectionamo
- three 实现噪声山脉地形模拟
柳晓黑胡椒
#gis实践three噪声算法simplex-noise
个人简介:某大型测绘遥感企业资深Webgis开发工程师,软件设计师(中级)、CSDN优质创作者作者:柳晓黑胡椒❣️专栏:gis实践若有帮助,还请关注➕点赞➕收藏,不行的话我再努努力需求背景思路实现效果noiseTerrain.vue需求背景在网上看到一个蛮好看的三维场景思路simplex-noise噪声算法实现效果noiseTerrain.vueimport*asTHREEfrom'three';
- 高斯白噪声仿真-复信号分析
TifLil
信号处理信号处理
零均值的高斯白噪声,如果其方差为σ\sigmaσ,则其功率为σ2\sigma^2σ2;下面通过matlab仿真来验证。仿真的信号为复信号。clear;clc;sigma=20;noiseRealPart=sigma*randn(1,100000);noiseImagPart=sigma*randn(1,100000);noise=noiseRealPart+1j*noiseImagPart;mea
- 【机器学习】机器学习工程实战-第3章 数据收集和准备
腊肉芥末果
机器学习工程实战机器学习人工智能
上一章:第2章项目开始前文章目录3.1关于数据的问题3.1.1数据是否可获得3.1.2数据是否相当大3.1.3数据是否可用3.1.4数据是否可理解3.1.5数据是否可靠3.2数据的常见问题3.2.1高成本3.2.2质量差3.2.3噪声(noise)3.2.4偏差(bias)3.2.5预测能力低(lowpredictivepower)3.2.6过时的样本3.2.7离群值3.2.8数据泄露/目标泄漏3
- SMOTE算法的改进与扩展
Java 第一深情
不平衡数据分类机器学习人工智能
一、SMOTE的改进算法1、Boderline-SMOTE只考虑分布在分类边界附近的少数类样本,并将其作为根样本首先通过k-NN方法将原始数据中的少数类样本划分成“Safe”、“Danger”和“Noise”3类,其中“Danger”类样本是指靠近分类边界的样本。对属于“Danger”类少数类样本进行过采样,可增加用于确定分类边界的少数类样本。这样做可以增加这些关键区域的少数类样本数量,使得模型在
- 2025-GNU Noise and Vibration Analysis
后端
2025-GNU,Graduatedschool,AdvancedNoiseandVibrationAnalysis(ANVA)Exercise1–MatlabBeforeyougetstartedwiththeexercisesyoumustcompletethefollowingsetuptasks:•DownloadthebasicplateMatlabcodefromthecourseLM
- 推荐项目:Python中的高性能Perlin噪声库——`noise`
毛彤影
推荐项目:Python中的高性能Perlin噪声库——noise项目地址:https://gitcode.com/gh_mirrors/nois/noise1、项目介绍在Python编程中寻找一种简单且快速的方法来生成Perlin噪声吗?那么noise库就是你的理想之选。这个开源项目由CaseyDuncan开发,提供了一个强大的工具集,用于在Python程序中轻松实现Perlin噪声的生成,适用于
- LabVIEW基于双通道FFT共轭相乘的噪声抑制
LabVIEW开发
LabVIEW知识LabVIEW参考程序LabVIEW功能LabVIEW伺服阀
对于双通道采集的含噪信号,通过FFT获取复数频谱后,对第二通道频谱取共轭并与第一通道频谱相乘,理论上可增强相关信号成分并抑制非相关噪声。此方法适用于通道间信号高度相关、噪声独立的场景(如共模干扰抑制)。以下为LabVIEW实现方案及案例验证。实现原理与步骤1.核心数学推导设两通道信号为:通道1:S1(t)=Signal(t)+Noise1(t)通道2:S2(t)=Signal(t)+Noise2(
- 【图像去噪】论文复现:真实噪声转高斯噪声,提升高斯噪声训练的模型性能!Learning to Translate Noise的Pytorch源码复现,跑通流程,框架结构和损失函数详解!
十小大
pytorch人工智能python图像去噪图像处理深度学习计算机视觉
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通LearningtoTranslateNoise源码,包含基于BasicSR的训练和测试代码,得
- YOLOv11-ultralytics-8.3.67部分代码阅读笔记-ops.py
红色的山茶花
YOLO笔记深度学习
ops.pyultralytics\models\utils\ops.py目录ops.py1.所需的库和模块2.classHungarianMatcher(nn.Module):3.defget_cdn_group(batch,num_classes,num_queries,class_embed,num_dn=100,cls_noise_ratio=0.5,box_noise_scale=1.0
- 基于跨学科任务图谱和大模型微调的智能体设计
东方-教育技术博主
知识图谱python知识图谱跨学科
技术方案:基于跨学科任务图谱和大模型微调的智能体设计1.跨学科任务图谱生成1.1降噪与补齐降噪跨学科任务图谱的生成首先要对原始数据进行降噪处理,以消除不必要的干扰信息。假设原始数据为(D),降噪后的数据为(D’),降噪过程可以通过以下公式表示:[D’=D-Noise(D)]其中,(Noise(D))表示从数据(D)中检测并去除的噪声部分。常用的降噪方法包括但不限于滤波器、统计异常值检测和基于机器学
- chattts本地化python部署及采坑记录(2024年亲测可用)
Catformon
python开发语言
ChatTTS是一个文本转语音的开源项目,短短2周左右的时间,在GitHub上已经斩获了24.4k的Star!官网:https://chattts.com/zh开源地址:https://github.com/2noise/ChatTTSChatTTS模型:https://huggingface.co/2Noise/ChatTTSChatTTS在线网页Demo:https://huggingface
- SPICE仿真软件:HSPICE_(5).仿真类型和设置
kkchenjj
电路仿真单片机嵌入式硬件仿真模拟电路仿真模拟仿真
仿真类型和设置在HSPICE中,可以进行多种类型的仿真,包括直流(DC)仿真、交流(AC)仿真、瞬态(Transient)仿真、噪声(Noise)仿真、蒙特卡洛(MonteCarlo)仿真等。每种仿真的类型和设置都有其特定的应用场景和方法。本节将详细介绍这些仿真类型及其设置方法,并提供具体的操作示例。直流(DC)仿真直流仿真用于分析电路在直流条件下的行为。这包括确定电路的偏置点、静态工作点等。直流
- 计算SNR
薛定谔的猫_大雪
人工智能
importcv2importnumpyasnpdefcalculate_snr(image):#读取图像img=cv2.imread(image,cv2.IMREAD_GRAYSCALE)#计算信号功率signal_power=np.mean(img)**2#计算噪声功率noise=img-np.mean(img)noise_power=np.mean(noise**2)#计算信噪比(SNR)s
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri