- 【三维目标检测】Complex-Yolov4详解(二):模型结构
Coding的叶子
Python三维点云实战宝典Complex-YoloComplex-Yolov4三维目标检测目标检测python
本文为博主原创文章,未经博主允许不得转载。本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。Complex-Yolo网络模型的核心思想是用鸟瞰图BEV替换Yolo网络输入的RGB图像。因此,在完成BEV处理之后,模型的训练和推理过程基本和Yolo完全一致。Yolov
- 3D点云--常见文件格式及特点
以下是针对3D点云常见文件格式及特点的详细解析,包含格式对比、结构示意图、典型应用场景及代码操作示例:一、主流点云文件格式全对比格式编码方式属性支持特点典型应用PCDASCII/二进制XYZ,RGB,强度,法线,自定义字段PCL原生格式,支持元数据头文件科研算法开发PLYASCII/二进制XYZ,RGB,法线,纹理坐标支持点云+网格混合存储,Stanford开发3D打印/扫描存档LAS二进制XYZ
- 基于点云边界提取与B样条拟合的二维轮廓重建的思路与原理
迅卓科技
C++PCL点云处理实战专栏c++PCL点云
该程序通过点云投影、凹包边界提取、逆时针排序和B样条曲线拟合四步流程,将三维点云转化为光滑的二维参数化边界曲线并可视化输出。效果图1.系统整体原理基于点云边界提取与B样条曲线拟合的系统,通过以下流程实现:点云预处理(投影+边界提取)边界点排序(逆时针)B样条曲线拟合结果可视化1.1点云预处理1.1.1点云投影功能:将三维点云投影到XY平面实现:创建z=0平面模型系数使用PProject函数执行投影
- 如何从ulord里获取收益
践行的朋友
Ulord是什么?Ulord是一条点对点的价值传递公链,通过搭建区块链底层架构和数字资源分发协议,支持第三方开发商在其开源协议之上构建自己的应用程序,与众多行业合作伙伴一起形成区块链技术与应用的完整生态。基于Ulord创建的各种规则和协议,嫁接包括文字、图片、音乐、视频、软件等在内的各类数字资源应用场景,为信息创造者与消费者提供直接的对接平台。听起来,很牛的样子,很多初识Ulord的朋友有点云里雾
- 3D Gaussian splatting 03: 用户数据训练和结果查看
目录3DGaussiansplatting01:环境搭建3DGaussiansplatting02:快速评估3DGaussiansplatting03:用户数据训练和结果查看3DGaussiansplatting04:代码阅读-提取相机位姿和稀疏点云3DGaussiansplatting05:代码阅读-训练整体流程3DGaussiansplatting06:代码阅读-训练参数3DGaussians
- 寻找圆柱缺陷
迅卓科技
C++PCL点云处理实战专栏c++开发语言PCL点云
该程序通过圆柱拟合、差异检测、聚类分割和三维尺寸计算,实现了对工业零件表面缺陷的自动化检测与量化分析,并输出可视化结果和详细尺寸报告。效果图1.圆柱拟合模块1.1核心功能实现点云数据的圆柱拟合,包括以下关键操作:最小二乘法拟合:通过特征值分解计算圆柱轴线方向RANSAC拟合:使用法线估计和采样一致性算法精修圆柱参数坐标变换:将圆柱轴线旋转至与Z轴平行圆柱可视化:根据参数生成圆柱表面点云1.2工作流
- 自动分割和测量混凝土钢筋的思路与原理
迅卓科技
C++PCL点云处理实战专栏c++开发语言PCL点云
该代码实现了一个基于PCL的点云处理系统,通过地面提取、钢筋识别和几何计算,自动测量混凝土结构中钢筋的间距、直径和高度差等参数。以下是分步骤原理详解:效果图1.系统架构概述系统使用PCL库处理点云数据,主要流程分为4个阶段:地面提取与旋转对齐混凝土结构分割钢筋识别与分组几何参数计算(直径/间距/高度差)2.核心处理流程2.1地面提取与旋转对齐//主要函数调用序列PGetMaxPlaneCoe()→
- 曲面点云填充加切片
迅卓科技
C++PCL点云处理实战专栏c++开发语言PCL点云
该点云处理系统通过平面检测、坐标系对齐、分层切片和着色可视化四步实现三维物体分析:首先使用RANSAC算法检测点云中的最大平面作为基准面;然后计算旋转矩阵将基准面对齐至XOY平面;接着沿法线方向等距移动点云生成平行切片;最后通过球形搜索提取切片点云并随机着色保存,实现物体在三维空间中的分层可视化分析。系统结合了几何变换(罗德里格斯旋转)、邻域搜索(KD树球形查询)和颜色映射等关键技术,为工业检测、
- 【C++PCL】点云处理总目录持续更新.....
迅卓科技
PCL点云处理c++开发语言
作者:迅卓科技简介:本人从事过多项点云项目,并且负责的项目均已得到好评!公众号:迅卓科技888重点:每个模块都有参数如何调试的讲解,即调试某个参数对结果的影响是什么,大家有问题可以评论哈,如果文章有错误的地方,欢迎来指出错误的地方。最近更新时间:2025年7月16号目录一、点云储存1.kd-tree2.kd-tree应用3.八叉树二、点云采样1.下采样2.上采样三、点云滤波1.传统滤波2.改进传统
- 【C++PCL】OBB包围盒
迅卓科技
PCL点云处理c++人工智能开发语言
作者:迅卓科技简介:本人从事过多项点云项目,并且负责的项目均已得到好评!公众号:迅卓科技888,一个可以让您可以学习点云的好地方重点:每个模块都有参数如何调试的讲解,即调试某个参数对结果的影响是什么,大家有问题可以评论哈,如果文章有错误的地方,欢迎来指出错误的地方。1.原理介绍OBB(OrientedBoundingBox)是包含点云的最小体积长方体,其方向由点云的主成分决定,而非与坐标轴对齐。核
- Windows PCL CMakeLists.txt配置示例
Coding的叶子
临时专栏CMakeLists.pclc++windowscmake
【版权声明】本文为博主原创文章,未经博主允许严禁转载,我们会定期进行侵权检索。参考书籍:《人工智能点云处理及深度学习算法》本文为专栏《Python三维点云实战宝典》系列文章,专栏介绍地址“【python三维深度学习】python三维点云从基础到深度学习_python3d点云从基础到深度学习-CSDN博客”。配套书籍《人工智能点云处理及深度学习算法》提供更加全面和系统的解析。在计算机视觉和机器人领域
- 使用C++和PCL创建模拟点云
Coding的叶子
临时专栏c++pcl点云可视化
【版权声明】本文为博主原创文章,未经博主允许严禁转载,我们会定期进行侵权检索。参考书籍:《人工智能点云处理及深度学习算法》本文为专栏《Python三维点云实战宝典》系列文章,专栏介绍地址“【python三维深度学习】python三维点云从基础到深度学习_python3d点云从基础到深度学习-CSDN博客”。配套书籍《人工智能点云处理及深度学习算法》提供更加全面和系统的解析。当使用C++和PCL(点
- Ubuntu PCL CMakeLists.txt配置示例
Coding的叶子
临时专栏ubuntucmakeCMakeLists.pclc++
【版权声明】本文为博主原创文章,未经博主允许严禁转载,我们会定期进行侵权检索。参考书籍:《人工智能点云处理及深度学习算法》本文为专栏《Python三维点云实战宝典》系列文章,专栏介绍地址“【python三维深度学习】python三维点云从基础到深度学习_python3d点云从基础到深度学习-CSDN博客”。配套书籍《人工智能点云处理及深度学习算法》提供更加全面和系统的解析。在计算机视觉和机器人领域
- C++ PCL求解法向量及可视化
Coding的叶子
临时专栏pclc++点云
【版权声明】本文为博主原创文章,未经博主允许严禁转载,我们会定期进行侵权检索。参考书籍:《人工智能点云处理及深度学习算法》本文为专栏《Python三维点云实战宝典》系列文章,专栏介绍地址“【python三维深度学习】python三维点云从基础到深度学习_python3d点云从基础到深度学习-CSDN博客”。配套书籍《人工智能点云处理及深度学习算法》提供更加全面和系统的解析。当使用C++和PCL(P
- 第3.3章 一文带你入门PCL点云库及在机器人SLAM中的代码实战
行知SLAM
机器人工程师带你入门SLAM人工智能c++算法机器人开发语言
目录一、PCL库:开启3D感知大门的钥匙二、PCL库基础入门2.1什么是PCL库2.2PCL源码头文件分类概览总结2.3安装PCL库2.4基础数据结构与概念三、PCL库在SLAM中的核心应用3.1点云获取与预处理3.2点云特征提取与描述3.3点云配准3.4点云分割与目标识别四、进阶技巧与优化策略4.1提高算法效率的方法4.2解决实际问题的经验4.3与其他技术的融合五、案例分析:PCL库实战应用六、
- C++ PCL点云处理实战专栏
迅卓科技
C++PCL点云处理实战专栏c++开发语言
本次技术分享围绕C++与PCL库在工业点云处理中的工程化应用展开,结合电力、建筑、隧道等垂直领域的实际技术需求,分阶段解析点云处理的核心算法、开发实践与系统落地路径。内容涵盖:算法原理剖析:深入解析PCL库核心机制(如点云滤波、特征提取、曲面重建等),结合数学原理与代码实现逻辑,建立工业级点云处理的算法认知体系。动态库开发实践:探讨工业场景下点云处理工具链的工程化封装(如点云分割、三维建模模块),
- 5.PCL 点云可视化,交互
吃个糖糖
PCL交互microsoft
文章目录可视化简单可视化高级可视化显示的方法法向显示显示形状多窗口键盘鼠标交互可视化简单可视化pcl::visualization::CloudViewerviewer("CloudViewer");//创建viewer对象viewer.showCloud(cloud);高级可视化使用PCLVisualizerpcl::visualization::PCLVisualizerviewer("3DV
- 【三维感知目标检测论文阅读】《Point RCNN: An Angle-Free Framework for Rotated Object Detection》
今天给大家带来的论文是2019年的《PointRCNN:AnAngle-FreeFrameworkforRotatedObjectDetection》。尽管这是一篇较早的纯点云检测论文,但我把它放在了最后来讲。因为在了解了各类主流方法后,再回过头来阅读它会有更深的理解。PointRCNN采用自底向上的方式直接从点云生成高质量的3D候选框,其对于旋转框的无角度(Angle-Free)处理方式,对于理
- C++ | 基于PCL与CloudCompare的投影点密度法(DOPP)开发实战
河工点云智绘WangG
点云深处CloudCompare&PCL开发c++开发语言
一、算法原理与详细步骤1.算法原理DOPP是一种用于点云地面滤波的算法,通过将三维点云投影到二维平面,并分析投影点密度的分布特征来区分地面点与非地面点(如植被、建筑物等)。其核心思想是:地面点在投影平面上通常呈现均匀且低密度的分布,而建筑物点等非地面点则密度高。DOPP本质是二维密度场分析,将三维分离问题转化为二维空间密度统计问题。2.算法详细步骤(1)点云投影(Projection)将三维点云沿
- C++ | 玩转点云:CloudCompare & PCL原生开发核心指南与示例分享
河工点云智绘WangG
点云深处CloudCompare&PCL开发c++开发语言
还在为点云处理的效率瓶颈和功能限制发愁吗?面对点云处理个性需求,是否让你感到束手束脚?调试困难、性能受限、定制化需求难以满足...本次分享将带你深入核心,走进点云深处,揭秘如何直接运用C++进行CloudCompare&PCL的原生集成开发。掌握核心步骤,规避常见陷阱,并附实用开发示例源码。助你:效率飙升:直达底层,性能最大化!灵活无限:自由定制算法流程,深度集成业务逻辑!掌控全局:彻底理解框架机
- 手持激光雷达单木分割——以河南工程学院杰出校友杨靖宇将军雕塑背后树林为例
河工点云智绘WangG
河工点云智绘教育培训
教学相长,最近带学生激光雷达实习,采集了河南工程学院校园机载、车载和手持激光雷达数据,针对手持激光雷达,也来玩玩单木分割。一、手持激光雷达单木分割概念单木分割(IndividualTreeSegmentation)是从激光雷达(LiDAR)点云数据中识别并分离出单棵树木的过程,是林业资源调查、森林碳汇估算、生物多样性研究的关键技术。二、关键技术步骤详解1.点云预处理去噪:移除飞点、鸟群等非地表物体
- 自动驾驶激光3D点云处理系统性阐述及Open3D库函数应用
一碗白开水一
DPL自动驾驶3d人工智能
一、自动驾驶激光3D点云处理的核心挑战与流程自动驾驶系统依赖激光雷达(LiDAR)生成的高精度3D点云数据实现环境感知,其处理流程需解决以下核心问题:数据规模与实时性:现代LiDAR每秒生成数百万点,需在毫秒级完成处理以支持决策。动态环境适应性:需区分静态障碍物(如道路、建筑)与动态目标(如车辆、行人)。多传感器融合:与摄像头、雷达数据时空对齐,构建统一环境模型。典型处理流程分为四个阶段:原始点云
- 海森矩阵(Hessian Matrix)在SLAM图优化和点云配准中的应用介绍
点云SLAM
算法矩阵概率论机器学习数值优化最小二乘法算法机器人
在非线性最小二乘问题中(如SLAM或点云配准),通常我们有一个误差函数:f(x)=∑i∥ei(x)∥2f(x)=\sum_i\|e_i(x)\|^2f(x)=i∑∥ei(x)∥2其中ei(x)e_i(x)ei(x)是残差项,对它求Hessian就需要用雅可比矩阵:H=J⊤J+∑iei⊤HeiH=J^\topJ+\sum_ie_i^\topH_{e_i}H=J⊤J+i∑ei⊤Hei通常我们近似为:H
- 【常见滤波器】PCL 点云投影到拟合平面
X-Vision
《PCL算法案例开发》平面3dpcl计算机视觉算法点云
PCL点云投影到拟合平面-原理、实现与最佳实践目录平面投影的核心原理⚙️PCL平面投影架构基础平面投影实现高级投影技术与优化投影质量评估与分析️工程应用案例⚠️常见问题与解决方案可视化与调试平面投影的核心原理数学原理与几何概念点云投影到拟合平面是将三维点云数据降维到二维平面的过程,核心思想是正交投影:平面方程:ax+by+cz+d=0ax+by+cz+d=0ax+by+cz+d=0平面法向量:n=
- 【常见滤波器】PCL 模型滤波器
PCL模型滤波器-几何模型驱动的点云处理技术目录模型滤波器核心概念⚙️PCL模型滤波器架构基础模型滤波器实践高级模型滤波技术模型拟合精度优化️工业应用案例调试与可视化⚡️性能优化策略模型滤波器核心概念模型滤波的本质模型滤波器通过拟合几何模型并评估点云与模型的贴合度,实现对点云的过滤和处理。不同于基础的空间滤波器,模型滤波器能够识别并利用点云的底层几何结构信息。在阈值内超出阈值输入点云模型识别与拟合
- PCL | 体素滤波器pcl::VoxelGrid<>
Nines~
ROS算法ROSSLAMPCLC++
文章目录概述一、定义介绍二、功能作用三、使用示例源码:解释:概述 本节详细介绍pcl::VoxelGrid是PointCloudLibrary(PCL)中的一个常用滤波器,用于对点云数据进行体素栅格化(VoxelGridFiltering)。它将点云分割成一个个体素(voxel),并使用这些体素中的点计算出一个代表性的点,从而减少点云的数量,实现降采样的效果。二、功能作用降采样:在处理大规模点云
- PCL改进的体素滤波器
代码探险狂人
PCL
体素滤波是一种常用的点云数据处理方法,可以用于去除噪声、平滑点云数据以及进行体素化等操作。PCL(点云库)是一个广泛使用的开源库,提供了丰富的点云处理算法和工具。在本文中,我们将介绍如何改进PCL的体素滤波器,并提供相应的源代码。体素滤波器是一种基于体素网格的滤波方法,它将点云数据划分为规则的体素网格,并对每个体素内的点进行处理。传统的体素滤波器在去除噪声和平滑数据方面表现良好,但在一些特定场景下
- 使用python的open3d库读取Bin格式点云并可视化
Python有很多库都可以处理点云,比如Python-PCL、Open3D等等。Python-PCL库已经很久没有维护了,而且安装极其麻烦!Open3D是由intel发布的3D点云可视化库,点云可视化和渲染都很方便,重要的是安装方便!!!1.安装PythonOpen3D环境:Ubuntu16.04pipinstallopen3d==0.9.0.0注意:open3d0.9.0.0只支持python2
- loam的scanRegistration.cpp文件学习
上一篇博客解析了imuhandler和AccumulateIMUShift()函数,知道了imu预积分。本篇文章就一块看看,点云生成以及点云特征是如何提取的。一、首先看订阅点云函数voidlaserCloudHandler(constsensor_msgs::PointCloud2ConstPtr&laserCloudMsg)。先看代码了//接收点云数据,velodyne雷达坐标系安装为x轴向前,
- 什么是点云?怎么实现点云扫描?
zhongqu_3dnest
点云点云扫描点云建模三维空间激光扫描技术
什么是点云?点云是一种数据集,其中包含大量代表物体表面几何形状的点。这些点通过测量仪器获取,通常使用三维坐标测量机、三维激光扫描仪或照相式扫描仪等设备。每个点由X、Y、Z坐标和一个强度值组成,这个强度值通常反映了物体表面反射率返回信号的强度。当这些点被组合在一起时,就形成了一个点云,即空间中代表3D形状或对象的数据点集合。点云是3D扫描和3D建模过程中的直接数字输出,可以用于创建高度精确的3D模型
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR