摆(行列式、杜教筛)

有一个 n × n n\times n n×n 的矩阵 A A A,满足:
A i , j = { 1 i = j 0 i ≠ j ∧ i ∣ j C otherwise A_{i,j}=\begin{cases} 1 &i=j\\ 0 &i\not=j\land i\mid j\\ C &\text{otherwise} \end{cases} Ai,j= 10Ci=ji=jijotherwise

det ⁡ ( A ) \det(A) det(A)。答案模 998244353 998244353 998244353

n ≤ 1 0 11 n\le10^{11} n1011


显然当 C = 0 C=0 C=0 时答案为 1 1 1,当 C = 1 C=1 C=1 时若 n ≤ 2 n\le2 n2 则答案为 1 1 1 否则为 0 0 0

首先 A A A 形如:
[ 1 0 0 0 0 … C 1 C 0 C … C C 1 C C … C C C 1 C … C C C C 1 … ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ] \begin{bmatrix} 1&0&0&0&0&\dots\\ C&1&C&0&C&\dots\\ C&C&1&C&C&\dots\\ C&C&C&1&C&\dots\\ C&C&C&C&1&\dots\\ \vdots&\vdots&\vdots&\vdots&\vdots&\ddots \end{bmatrix} 1CCCC01CCC0C1CC00C1C0CCC1

考虑把主对角线的 1 1 1 换位 C + x C+x C+x,这样 det ⁡ ( A ) \det(A) det(A) 就可看做关于 x x x 的多项式,求值只需代入 x = 1 − C x=1-C x=1C 即可。

这里有个式子

det ⁡ ( A ) = ∑ S ⊂ { 1 , 2 , … , n } det ⁡ ( B S ) ⋅ x n − ∣ S ∣ \det(A)=\sum\limits_{S\subset\{1,2,\dots,n\}}\det(B_S)\cdot x^{n-|S|} det(A)=S{1,2,,n}det(BS)xnS

其中 B S B_S BS 表示把矩阵 A A A 主对角线元素换成 C C C,只选出行列都在 S S S 中的元素拼接形成的矩阵。

例如: B { 1 , 2 , 4 , 5 , 8 } = [ C 0 0 0 0 C C 0 C 0 C C C C 0 C C C C C C C C C C ] B_{\{1,2,4,5,8\}}=\begin{bmatrix} C&0&0&0&0\\ C&C&0&C&0\\ C&C&C&C&0\\ C&C&C&C&C\\ C&C&C&C&C\\ \end{bmatrix} B{1,2,4,5,8}= CCCCC0CCCC00CCC0CCCC000CC

证明考虑感性理解。设 i = n − ∣ S ∣ i=n-|S| i=nS,对于 x i x^{i} xi 的系数,考虑行列式的定义,要选出行列都互不相同的 n n n 个数相乘,由于只有主对角线上的 C + x C+x C+x 有次数贡献,于是考虑选出来 m m m 个主对角线上的元素( m ≥ i m\ge i mi),剩下的行列拼接在一起后面选。我们此时发现 n − m + m − i = n − i n-m+m-i=n-i nm+mi=ni,说明 B S B_S BS 是由 S S S 的行列与 m m m 行列之中选 m − i m-i mi 个组成的, ( C + x ) m (C+x)^m (C+x)m x i x^i xi 的系数为 ( m i ) C m − i \binom{m}{i}C^{m-i} (im)Cmi,恰好满足条件。

我们观察 B S B_S BS,发现如果 S S S 中元素两两整除,那么 B S B_S BS 是下三角矩阵, det ⁡ ( B S ) = C ∣ S ∣ \det(B_S)=C^{|S|} det(BS)=CS。否则可以证明 det ⁡ ( B S ) = 0 \det(B_S)=0 det(BS)=0

考虑归纳法证明,如果 S S S 中存在两个数不为 S S S 中其他任何数的因子,那么矩阵中就会出现两行 C C C det ⁡ ( B S ) = 0 \det(B_S)=0 det(BS)=0;否则 S S S 中最大的数一定是其他数的倍数,从而只有最后一行全为 C C C,不妨删去最后一行列。这样递归下去,容易发现结论成立。

r = C 1 − C r=\frac{C}{1-C} r=1CC,于是 det ⁡ ( A ) = ( 1 − C ) n ∑ S 中元素两两整除 r ∣ S ∣ \det(A)=(1-C)^n\sum\limits_{S中元素两两整除} r^{|S|} det(A)=(1C)nS中元素两两整除rS

f i f_i fi 表示所有满足 S S S 中最大元素为 i i i r ∣ S ∣ r^{|S|} rS 之和(特别地, f 1 = 1 + r f_1=1+r f1=1+r)。容易得到转移式子
f i = r ∑ j ∣ i , j < i f j f_i=r\sum\limits_{j\mid i,jfi=rji,j<ifj

s ( i ) = ∑ j = 1 i f j s(i)=\sum\limits_{j=1}^if_j s(i)=j=1ifj,我们要求出 s ( n ) s(n) s(n)

考虑杜教筛,我们构造 g ( n ) = { − 1 n = 1 r n > 1 g(n)=\begin{cases}-1&n=1\\r&n>1\end{cases} g(n)={1rn=1n>1,函数 h = f ∗ g h=f*g h=fg,容易验证 h ( n ) = { − r − 1 n = 1 0 n > 1 h(n)=\begin{cases}-r-1&n=1\\0&n>1\end{cases} h(n)={r10n=1n>1。套用公式 g ( 1 ) s ( n ) = ∑ i = 1 n h i − ∑ i = 2 n g ( i ) s ( ⌊ n i ⌋ ) g(1)s(n)=\sum\limits_{i=1}^nh_i-\sum\limits_{i=2}^ng(i)s(\lfloor\frac ni\rfloor) g(1)s(n)=i=1nhii=2ng(i)s(⌊in⌋),可以得到 s ( n ) s(n) s(n) 的转移式子
s ( n ) = 1 + r + r ∑ i = 2 n s ( ⌊ n i ⌋ ) s(n)=1+r+r\sum\limits_{i=2}^ns(\lfloor\frac ni\rfloor) s(n)=1+r+ri=2ns(⌊in⌋)

到此直接按式子求答案是 O ( n 3 4 ) O(n^{\frac34}) O(n43) 的,如果预处理出前 n 2 3 n^{\frac23} n32 s ( n ) s(n) s(n),求值可以做到 O ( n 2 3 ) O(n^{\frac23}) O(n32)

但是预处理时间复杂度容易带上 log ⁡ \log log,所以要考虑优化。

n = ∏ p i k i n=\prod p_i^{k_i} n=piki,如果我们把 p 1 , p 2 , … p_1,p_2,\dots p1,p2, 依次换成 2 , 3 , 5 , 7 , … 2,3,5,7,\dots 2,3,5,7,,所得到的数设为 n ′ n' n,容易发现 f n = f n ′ f_n=f_{n'} fn=fn。这启发我们 f n f_n fn 的值只与可重集 k k k 有关。通过暴力发现可重集的数量很少,于是我们可以暴力求出这些“代表”的函数值,然后让找到其他数所对应的“代表”。用欧拉筛实现,具体实现可参照代码。

总的时间复杂度为 O ( n 2 3 ) O(n^{\frac23}) O(n32)

#include
using namespace std;
#define ll long long
const ll mod=998244353,N=2e7+1;
ll n,c,R;
int a[N],p[N],cnt,m,to[N],num[N],Max[N];
ll S[N];
unordered_map<ll,int> ma;
ll ksm(ll a,ll b)
{
    ll ans=1;
    while(b){
        if(b&1) ans=ans*a%mod;
        b>>=1;
        a=a*a%mod;
    }
    return ans;
}
ll s(ll n)
{
    if(n<=m) return S[n];
    if(ma.count(n)) return ma[n];
    ll ans=1+R;
    for(ll i=2,r;i<=n;i=r+1){
        r=n/(n/i);
        ans=(ans+(r-i+1)%mod*R%mod*s(n/i))%mod;
    }
    return ma[n]=ans;
}
void init(int n)
{
    a[1]=1,to[1]=S[1]=1+R;
    for(int i=2;i<=n;i++){
        if(!a[i]){
            p[++cnt]=i;
            to[i]=2;
            num[i]=1;
            Max[i]=i;
        }
        if(to[i]==i){
            for(int j=1;j*j<=i;j++) if(i%j==0) S[i]=(S[i]+S[j]+(j*j<i&&j>1)*S[i/j])%mod;
            S[i]=S[i]*R%mod;
        }
        else S[i]=S[to[i]];
        for(int j=1;j<=cnt&&i*p[j]<=n;j++){
            int x=i*p[j];
            a[x]=1;
            Max[x]=Max[i];
            if(i%p[j]==0){
                num[x]=num[i];
                to[x]=to[x/Max[x]]*p[num[x]];
                break;
            }
            num[x]=num[i]+1;
            to[x]=to[x/Max[x]]*p[num[x]];
        }
    }
    for(int i=2;i<=n;i++) S[i]=(S[i]+S[i-1])%mod;
}
int main()
{
    freopen("bigben.in","r",stdin);
    freopen("bigben.out","w",stdout);
    cin>>n>>c;
    if(!c) cout<<1,exit(0);
    if(c==1) cout<<(n<=2),exit(0);
    R=c*ksm(1-c+mod,mod-2)%mod;
    init(m=min(n,N-1));
    cout<<s(n)*ksm(1-c+mod,n)%mod;
}

你可能感兴趣的:(线性代数)