高代绿皮第四版课后习题复习题一T19

原题


计算下列n阶行列式的值

|A|=\left| \begin{matrix} 1 & {​{x}_{1}} & \cdots & x_{1}^{i-1} & x_{1}^{i+1} & \cdots & x_{1}^{n} \\ 1 & {​{x}_{2}} & \cdots & x_{2}^{i-1} & x_{2}^{i+1} & \cdots & x_{2}^{n} \\ \vdots & \vdots & {} & \vdots & \vdots & {} & \vdots \\ 1 & {​{x}_{n}} & \cdots & x_{n}^{i-1} & x_{n}^{i+1} & \cdots & x_{n}^{n} \\ \end{matrix} \right|\,\,(1\leqslant i\leqslant n-1)


解析


思路:

注意到 |A| 与标准的Vandermonde行列式缺少了 i 次幂的列,故可构造n+1阶Vandermonde行列式

|B|=\left| \begin{matrix} 1 & {​{x}_{1}} & \cdots & x_{1}^{i-1} &x_{1}^{i}& x_{1}^{i+1} & \cdots & x_{1}^{n} \\ 1 & {​{x}_{2}} & \cdots & x_{2}^{i-1} &x_{2}^{i}& x_{2}^{i+1} & \cdots & x_{2}^{n} \\ \vdots & \vdots & {} & \vdots &\vdots& \vdots & {} & \vdots \\ 1 & {​{x}_{n}} & \cdots & x_{n}^{i-1} &x_{n}^{i}& x_{n}^{i+1} & \cdots & x_{n}^{n} \\1&y&\cdots&y^{i-1}&y^{i}&y^{i+1}&\cdots&y^{n} \end{matrix} \right|

将 |B| 按第n+1行展开

|B|=1\cdot A_{n+1,1}+y\cdot A_{n+1,2}+\cdots+y^{i}\cdot A_{n+1,i+1}+\cdots+y^{n}\cdot A_{n+1,n+1}

由于

A_{n+1,i+1}=(-1)^{n+1+i+1}|A|=(-1)^{n+i}|A|

则只需求出 y^{i} 的系数,由于 |B| 为Vandermonde行列式,根据公式求得

|B|=(y-x_{1})(y-x_{2})\cdots(y-x_{n})\prod\limits_{1\leqslant i\leqslant j\leqslant n}{(x_{j}-x_{i})}

根据多项式知识可得 y^{i} 的系数为

\sum\limits_{1\leqslant k_{1}<k_{2}<\cdots<k_{n-i}\leqslant n}{(-1)^{n-i}x _{k_{1}}x_{k_{2}}\cdots x_{k_{n-i}}}\prod\limits_{1\leqslant i\leqslant j\leqslant n}{(x_{j}-x_{i})}

于是

(-1)^{n+i}\,|A|=\sum\limits_{1\leqslant k_{1}<k_{2}<\cdots<k_{n-i}\leqslant n}{(-1)^{n-i}x _{k_{1}}x_{k_{2}}\cdots x_{k_{n-i}}}\prod\limits_{1\leqslant i\leqslant j\leqslant n}{(x_{j}-x_{i})}

故求得

|A|=\sum\limits_{1\leqslant k_{1}<k_{2}<\cdots<k_{n-i}\leqslant n}{x _{k_{1}}x_{k_{2}}\cdots x_{k_{n-i}}}\prod\limits_{1\leqslant i\leqslant j\leqslant n}{(x_{j}-x_{i})}

参考解题细节:

高代绿皮第四版课后习题复习题一T19_第1张图片

你可能感兴趣的:(#,第一章计算题精选,线性代数)