- 讨论神经网络中的卷积与数学中的卷积有何不同
陶大明
1.当提到神经网络中的卷积时,我们通常是指由多个并行卷积组成的运算。(因为单个核只能特区一种类型的特征,我们usually希望可以在多个位置提取多个特征)2.输入也不仅仅是实值的网格,而是由一系列观测数据的向量构成的网格。我们有的时候会希望跳出核中的一些位置来降低计算的开销(相应的代价是提取特征没有先前那么好了)我们就把这个过程看作对全卷积函数输出的下采样(downsampling).如果只是在输
- 【CNN】卷积神经网络池化- part2
1.池化降采样,减少参数数量,避免过拟合,提高鲁棒性2.池化操作池化操作(也称为下采样,Subsampling)类似卷积操作,使用的也是一个很小的矩阵,叫做池化核,但是池化核本身没有参数,只是通过对输入特征矩阵本身进行运算,它的大小通常是2x2、3x3、4x4等,其中2x2使用频率最高。然后将池化核在卷积得到的输出特征图中进行池化操作,需要注意的是,池化的过程中也有Padding方式以及步长的概念
- LLM模型 贪婪、温度、Top-k、核采样方式的区别---附代码与示例
繁星意未平
AIpython开发语言
LLM模型贪婪、温度、Top-k、核采样方式的区别—附代码与示例在自然语言生成任务中,不同的采样技术用于从语言模型的输出中选择下一个生成的单词或词语。这些技术包括贪婪采样、温度采样、Top-k采样和核(Nucleus)采样。它们在选择生成单词的过程中有不同的策略,本文将介绍这四种采样方式的区别。1.贪婪采样(GreedySampling)贪婪采样是一种直接选择最可能的下一个词的策略。具体步骤为:从
- 解密企业级大模型智能体Agentic AI 关键技术:MCP、A2A、Reasoning LLMs- GPT源代码解析
大模型与Agent智能体
A2AMCPDeepSeekA2AMCPManusADK
解密企业级大模型智能体AgenticAI关键技术:MCP、A2A、ReasoningLLMs-GPT源代码解析我们可以稍微看一下,这是我们GPT的基于它的源代码产生的可视化的内容。这边是model,我们在谈这个sampling的时候,本身首先就是说它这个probabilitydistribution,会有很多的参数对它进行影响。例如temperature,如果你是hightemperature的话
- 【AI论文】GLM-4.1V-思考:借助可扩展强化学习实现通用多模态推理
东临碣石82
人工智能
摘要:我们推出GLM-4.1V-Thinking这一视觉语言模型(VLM),该模型旨在推动通用多模态推理的发展。在本报告中,我们分享了在以推理为核心的训练框架开发过程中的关键发现。我们首先通过大规模预训练开发了一个具备显著潜力的高性能视觉基础模型,可以说该模型为最终性能设定了上限。随后,借助课程采样强化学习(ReinforcementLearningwithCurriculumSampling,R
- vllm推理实践
try2find
java前端服务器
1.vllm推理demo实验fromvllmimportLLM,SamplingParams#定义生成参数sampling_params=SamplingParams(temperature=0.7,top_p=0.9,max_tokens=100,)#加载DeepSeek模型(以deepseek-llm-7b为例)#model_name="deepseek-ai/deepseek-llm-7b"
- 大模型中的temperature、topk、topn、repetition_penalty等参数原理
seetimee
大模型技术细节大模型
核心就在于采样策略,一图胜千言:上图中语言模型(languagemodel)的预测输出其实是字典中所有词的概率分布,而通常会选择生成其中概率最大的那个词。不过图中出现了一个采样策略(samplingstrategy),这意味着有时候我们可能并不想总是生成概率最大的那个词。设想一个人的行为如果总是严格遵守规律缺乏变化,容易让人觉得乏味;同样一个语言模型若总是按概率最大的生成词,那么就容易变成XX讲话
- AD7606过采样模式
零度随想
嵌入式硬件fpga开发
AD7606的过采样模式(OversamplingMode)是其重要特性之一,它可提升信噪比(SNR)、有效分辨率、降低系统噪声。✅一、什么是过采样(Oversampling)过采样是指ADC内部将每个通道采样多次,然后进行数字平均滤波,以减少随机噪声、提升信号质量。在AD7606中,过采样是由芯片内部硬件自动完成的:每次外部采样触发→芯片在内部进行多次转换→平均值输出对外仍只输出1个16位数据→
- 长尾形分布论文速览【80-119】
木木阳
Long-tailed人工智能
为便于理解和应用,以下将30篇关于长尾分布的研究文献按主题进行分类整理。每一大类包含相应的工作,帮助我们从整体上把握各方向的研究进展。1.长尾半监督学习与伪标签优化Paper90:Uncertainty-awareSamplingforLong-tailedSemi-supervisedLearning提出了一种动态阈值选择方法(UDTS),能有效改善尾部分类性能,适用于不平衡类别的半监督学习。P
- influxdb-comparisons IOT数据测试 使用记录
外环西路007号
tsdb物联网devops运维时序数据库
文章目录生成测试数据数据倒数influxdb数据导入influxdb后显示结果生成测试数据./bulk_data_gen-formatinflux-bulk-use-caseiot-seed100-sampling-interval10s-scale-var10-timestamp-start"2022-12-01T00:00:00+80:00"-timestamp-end"2023-01-03T
- 强化学习系列——PPO算法
lqjun0827
算法深度学习算法人工智能
强化学习系列——PPO算法PPO算法一、背景知识:策略梯度&Advantage二、引入重要性采样(ImportanceSampling)三、PPO-Clip目标函数推导✅四、总结公式(一图总览)参考文献PPO示例代码实现补充内容:重要性采样一、问题背景:我们想估计某个期望❗问题:二、引入重要性采样(ImportanceSampling)三、离散采样形式(蒙特卡洛估计)四、标准化的重要性采样五、在强
- 第十节 新特性与趋势-CSS层叠规则升级
泽泽爱旅行
csscss前端html
以下是关于CSS层叠规则升级的全面解析,结合最新规范(如级联层@layer)和传统层叠机制的演进,从核心原理、应用场景到实践策略的系统性总结:一、传统层叠规则的三大支柱CSS层叠规则的传统机制基于以下三个维度解决样式冲突,按优先级排序:重要性(Importance)!important声明最高优先级,但滥用会导致维护困难。优先级顺序:开发者!important>浏览器默认!important>普通
- 在signal 这个信号上加一个高斯噪声,噪声的水平可以调节,如何实现?
fK0pS
PYTHON
要在信号signal上添加可调节水平的高斯噪声,可以使用NumPy的random.normal函数生成高斯噪声。高斯噪声的水平可以通过标准差(std)参数来控制,标准差越大,噪声水平越高。以下是实现代码:importnumpyasnp#原始信号生成代码signal_duration_s=60#信号长度为1秒##changeunittosecondsampling_freq=1000#采样频率为10
- 【图像去噪】论文精读:Zero-Shot Blind-spot Image Denoising via Implicit Neural Sampling
十小大
深度学习人工智能图像处理计算机视觉图像去噪论文阅读论文笔记
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言Abstract1.Introduction1.1.LearningdenoisingNNwithouttruthimages1.2.Discussionsonbli
- matlab产生单脉冲,一些有关雷达的程序 另外求有关单脉冲雷达信号产生的程序...
13709382269
matlab产生单脉冲
该楼层疑似违规已被系统折叠隐藏此楼查看此楼小女子路遇强悍的毕业设计来到贴吧求大神们出手相助感激不尽!!在此给出一点程序看可不可以帮助到大家线性调频信号的产生程序T=10e-6;%pulseduration10usB=30e6;%chirpfrequencymodulationbandwidth30MHzK=B/T;%chirpslopeFs=2*B;Ts=1/Fs;%samplingfrequen
- Python实战:随机森林
python游乐园
python随机森林机器学习
随机森林(RandomForest)是一种集成学习方法,由多个决策树组成,可用于分类和回归任务。基本原理随机森林的核心思想是构建多个决策树,并将这些决策树的结果进行综合。在构建每棵决策树时,采用了两种随机化策略:数据采样随机:使用自助采样法(BootstrapSampling)从原始训练数据集中有放回地抽取一定数量的样本,形成一个新的训练子集,用于训练每一棵决策树。这意味着每棵树的训练数据可能会有
- LLM 笔记:Speculative Decoding 投机采样
UQI-LIUWJ
机器学习笔记
1基本介绍投机采样(SpeculativeSampling)是一种并行预测多个可能输出,然后快速验证并采纳正确部分的加速策略在不牺牲输出质量的前提下,减少语言模型生成token所需的时间传统的语言模型生成是串行的必须生成一个,再输入到模型中,才能生成下一个投机采样的核心思想是用一个“小模型”提前生成多个候选token(投机结果),然后用“大模型”一起验证这批候选,并行加速。2举例比如已有promp
- 深度学习中的负采样
洪小帅
深度学习人工智能
深度学习中的负采样负采样(NegativeSampling)是一种在训练大型分类或概率模型(尤其是在输出类别很多时)中,用来加速训练、降低计算量的方法。它常用于:词向量训练(如Word2Vec)推荐系统(从大量候选项中学正例与负例)语言模型、对比学习、信息检索等场景本质概念在许多任务中,我们的模型要从上万个候选中预测正确类别。例如:给定单词“cat”,预测它上下文中出现的词(如Word2Vec的S
- vLLM - 控制生成过程中返回对数概率信息 logprobs的输出和解释
二分掌柜的
大模型vLLM
vLLM-控制生成过程中返回对数概率信息logprobs的输出和解释flyfish在vLLM的代码中,logprobs是一个控制生成过程中返回对数概率信息的参数。它决定了模型在生成每个token时,会返回多少个候选token的概率分布信息。以下是详细解释:logprobs参数的作用在SamplingParams中设置logprobs=k时:模型会返回每个生成token的对数概率(即模型选择该tok
- STM32的ADC模块中,**采样时机(Sampling Time)**和**转换时机(Conversion Time),获取数据的时机详解
happygrilclh
煤炭设备stm32嵌入式硬件单片机
在STM32的ADC模块中,**采样时机(SamplingTime)和转换时机(ConversionTime)**是ADC工作流程中的两个关键阶段,直接影响采样精度和系统实时性。以下是详细解析:1.采样时机(SamplingTime)(1)定义采样阶段:ADC对输入信号进行保持和稳定的过程。采样时间:由ADC_SMPRx寄存器配置,决定采样电容充电时间。(2)配置参数STM32F103的采样时间可
- 快速傅里叶变换python_FFT快速傅里叶变换的python实现过程解析
weixin_39771987
快速傅里叶变换python
FFT是DFT的高效算法,能够将时域信号转化到频域上,下面记录下一段用python实现的FFT代码。#encoding=utf-8importnumpyasnpimportpylabaspl#导入和matplotlib同时安装的作图库pylabsampling_rate=8000#采样频率8000Hzfft_size=512#采样点512,就是说以8000Hz的速度采512个点,我们获得的数据只有
- FastMCP - 快速、Pythonic风格的构建MCP server 和 client
编程乐园
#AI开源项目mcpFastMCPserverclient快速agenttool
文章目录一、关于FastMCP相关链接资源快速构建示例什么是MCP?为什么选择FastMCP?核心特性服务器客户端v2版本更新内容二、安装添加验证安装安装用于开发三、核心概念1、`FastMCP`服务器2、工具3、资源4、提示5、上下文6、图片7、MCP客户端7.1客户端方法7.2运输选项7.3LLMSampling7.4根访问四、高级功能1、代理服务器2、组成MCP服务器3、OpenAPI&Fa
- SpringAI系列 - MCP篇(一) - 什么是MCP
罗小爬EX
SpringAIspringaimcpllm
目录一、引言二、MCP核心架构三、MCP传输层(stdio/sse)四、MCP能力协商机制(CapabilityNegotiation)五、MCPClient相关能力(Roots/Sampling)六、MCPServer相关能力(Prompts/Resources/Tools)一、引言之前我们在接入大模型时,不同的大模型通常都有自己的交互协议,所以类似SpringAI框架都会为每一种大模型开发各自
- 常见的卷积神经网络列举
巷955
cnn人工智能神经网络
经典的卷积神经网络(CNN)在深度学习发展史上具有重要地位,以下是一些里程碑式的模型及其核心贡献:1.LeNet-5(1998)提出者:YannLeCun特点:首个成功应用于手写数字识别(MNIST)的CNN。结构:卷积层+池化层(当时用Subsampling)+全连接层。使用Tanh激活函数,后续被ReLU取代。意义:奠定了CNN的基本结构。2.AlexNet(2012)提出者:AlexKriz
- 60天Python训练 day13
only_only_you
python深度学习开发语言
不平衡标签的处理1.随机过采样#1.随机过采样fromimblearn.over_samplingimportRandomOverSamplerros=RandomOverSampler(random_state=42)#创建随机过采样对象X_train_ros,y_train_ros=ros.fit_resample(X_train,y_train)#对训练集进行随机过采样print("随机过采
- pcl 中的滤波与降采样
诺有缸的高飞鸟
3d视觉点云算法c++pcl点云降采样
目录pclfilter模块RandomSampleUniformSamplingVoxelGridStatisticalOutlierRemovalfilter应用参考完pclfilter模块Modulefilters:https://pointclouds.org/documentation/group__filters.htmlRandomSample、UniformSampling、Voxe
- 交叉验证 java_从R中的交叉验证(训练)数据绘制ROC曲线
极萨学院冷哲
交叉验证java
我想知道是否有一种方法可以根据使用caret包生成的SVM-RFE模型的交叉验证数据绘制平均ROC曲线.我的结果是:RecursivefeatureselectionOuterresamplingmethod:Cross-Validated(10fold,repeated5times)Resamplingperformanceoversubsetsize:VariablesROCSensSpecA
- 【统计方法】交叉验证:Resampling, nested 交叉验证等策略 【含R语言】
pen-ai
数据科学r语言python深度学习
Resampling(重采样方法)重采样方法是从训练数据中反复抽取样本,并在每个(重新)样本上重新调整模型,以获得关于拟合模型的附加信息的技术。两种主要的重采样方法Cross-Validation(CV)交叉验证:用于估计测试误差和选择调优参数Bootstrap:主要用于评估可变性,如标准误差和置信区间估计测试误差的策略goldstandard:理想但无法实现(黄金标准)使用大型指定测试集(通常不
- 在vllm中,使用llm.generate()返回的List[RequestOutput]里面有什么参数?如何获得回答的token表示?
m0_62488776
vllmpython大模型
在使用vllm的时候,需要对输出做一个token数量的统计,但是在一般的示例里面都是如下摸样:fromvllmimportLLM,SamplingParams#Sampleprompts.prompts=["Hello,mynameis","ThepresidentoftheUnitedStatesis","ThecapitalofFranceis","ThefutureofAIis",]#Cre
- Select2控件的多选
量变决定质变
————jQuery
Select2的多选控件添加一个属性multiple=”multiple”页面元素${s.name}JS代码$('#samplingOprator').select2({width:200+"px",placeholder:"点击输入框,可以多选"});
- github中多个平台共存
jackyrong
github
在个人电脑上,如何分别链接比如oschina,github等库呢,一般教程之列的,默认
ssh链接一个托管的而已,下面讲解如何放两个文件
1) 设置用户名和邮件地址
$ git config --global user.name "xx"
$ git config --global user.email "
[email protected]"
- ip地址与整数的相互转换(javascript)
alxw4616
JavaScript
//IP转成整型
function ip2int(ip){
var num = 0;
ip = ip.split(".");
num = Number(ip[0]) * 256 * 256 * 256 + Number(ip[1]) * 256 * 256 + Number(ip[2]) * 256 + Number(ip[3]);
n
- 读书笔记-jquey+数据库+css
chengxuyuancsdn
htmljqueryoracle
1、grouping ,group by rollup, GROUP BY GROUPING SETS区别
2、$("#totalTable tbody>tr td:nth-child(" + i + ")").css({"width":tdWidth, "margin":"0px", &q
- javaSE javaEE javaME == API下载
Array_06
java
oracle下载各种API文档:
http://www.oracle.com/technetwork/java/embedded/javame/embed-me/documentation/javame-embedded-apis-2181154.html
JavaSE文档:
http://docs.oracle.com/javase/8/docs/api/
JavaEE文档:
ht
- shiro入门学习
cugfy
javaWeb框架
声明本文只适合初学者,本人也是刚接触而已,经过一段时间的研究小有收获,特来分享下希望和大家互相交流学习。
首先配置我们的web.xml代码如下,固定格式,记死就成
<filter>
<filter-name>shiroFilter</filter-name>
&nbs
- Array添加删除方法
357029540
js
刚才做项目前台删除数组的固定下标值时,删除得不是很完整,所以在网上查了下,发现一个不错的方法,也提供给需要的同学。
//给数组添加删除
Array.prototype.del = function(n){
- navigation bar 更改颜色
张亚雄
IO
今天郁闷了一下午,就因为objective-c默认语言是英文,我写的中文全是一些乱七八糟的样子,到不是乱码,但是,前两个自字是粗体,后两个字正常体,这可郁闷死我了,问了问大牛,人家告诉我说更改一下字体就好啦,比如改成黑体,哇塞,茅塞顿开。
翻书看,发现,书上有介绍怎么更改表格中文字字体的,代码如下
 
- unicode转换成中文
adminjun
unicode编码转换
在Java程序中总会出现\u6b22\u8fce\u63d0\u4ea4\u5fae\u535a\u641c\u7d22\u4f7f\u7528\u53cd\u9988\uff0c\u8bf7\u76f4\u63a5这个的字符,这是unicode编码,使用时有时候不会自动转换成中文就需要自己转换了使用下面的方法转换一下即可。
/**
* unicode 转换成 中文
- 一站式 Java Web 框架 firefly
aijuans
Java Web
Firefly是一个高性能一站式Web框架。 涵盖了web开发的主要技术栈。 包含Template engine、IOC、MVC framework、HTTP Server、Common tools、Log、Json parser等模块。
firefly-2.0_07修复了模版压缩对javascript单行注释的影响,并新增了自定义错误页面功能。
更新日志:
增加自定义系统错误页面功能
- 设计模式——单例模式
ayaoxinchao
设计模式
定义
Java中单例模式定义:“一个类有且仅有一个实例,并且自行实例化向整个系统提供。”
分析
从定义中可以看出单例的要点有三个:一是某个类只能有一个实例;二是必须自行创建这个实例;三是必须自行向系统提供这个实例。
&nb
- Javascript 多浏览器兼容性问题及解决方案
BigBird2012
JavaScript
不论是网站应用还是学习js,大家很注重ie与firefox等浏览器的兼容性问题,毕竟这两中浏览器是占了绝大多数。
一、document.formName.item(”itemName”) 问题
问题说明:IE下,可以使用 document.formName.item(”itemName”) 或 document.formName.elements ["elementName&quo
- JUnit-4.11使用报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing错误
bijian1013
junit4.11单元测试
下载了最新的JUnit版本,是4.11,结果尝试使用发现总是报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing这样的错误,上网查了一下,一般的解决方案是,换一个低一点的版本就好了。还有人说,是缺少hamcrest的包。去官网看了一下,如下发现:
- [Zookeeper学习笔记之二]Zookeeper部署脚本
bit1129
zookeeper
Zookeeper伪分布式安装脚本(此脚本在一台机器上创建Zookeeper三个进程,即创建具有三个节点的Zookeeper集群。这个脚本和zookeeper的tar包放在同一个目录下,脚本中指定的名字是zookeeper的3.4.6版本,需要根据实际情况修改):
#!/bin/bash
#!!!Change the name!!!
#The zookeepe
- 【Spark八十】Spark RDD API二
bit1129
spark
coGroup
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._
object CoGroupTest_05 {
def main(args: Array[String]) {
v
- Linux中编译apache服务器modules文件夹缺少模块(.so)的问题
ronin47
modules
在modules目录中只有httpd.exp,那些so文件呢?
我尝试在fedora core 3中安装apache 2. 当我解压了apache 2.0.54后使用configure工具并且加入了 --enable-so 或者 --enable-modules=so (两个我都试过了)
去make并且make install了。我希望在/apache2/modules/目录里有各种模块,
- Java基础-克隆
BrokenDreams
java基础
Java中怎么拷贝一个对象呢?可以通过调用这个对象类型的构造器构造一个新对象,然后将要拷贝对象的属性设置到新对象里面。Java中也有另一种不通过构造器来拷贝对象的方式,这种方式称为
克隆。
Java提供了java.lang.
- 读《研磨设计模式》-代码笔记-适配器模式-Adapter
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 适配器模式解决的主要问题是,现有的方法接口与客户要求的方法接口不一致
* 可以这样想,我们要写这样一个类(Adapter):
* 1.这个类要符合客户的要求 ---> 那显然要
- HDR图像PS教程集锦&心得
cherishLC
PS
HDR是指高动态范围的图像,主要原理为提高图像的局部对比度。
软件有photomatix和nik hdr efex。
一、教程
叶明在知乎上的回答:
http://www.zhihu.com/question/27418267/answer/37317792
大意是修完后直方图最好是等值直方图,方法是HDR软件调一遍,再结合不透明度和蒙版细调。
二、心得
1、去除阴影部分的
- maven-3.3.3 mvn archetype 列表
crabdave
ArcheType
maven-3.3.3 mvn archetype 列表
可以参考最新的:http://repo1.maven.org/maven2/archetype-catalog.xml
[INFO] Scanning for projects...
[INFO]
- linux shell 中文件编码查看及转换方法
daizj
shell中文乱码vim文件编码
一、查看文件编码。
在打开文件的时候输入:set fileencoding
即可显示文件编码格式。
二、文件编码转换
1、在Vim中直接进行转换文件编码,比如将一个文件转换成utf-8格式
&
- MySQL--binlog日志恢复数据
dcj3sjt126com
binlog
恢复数据的重要命令如下 mysql> flush logs; 默认的日志是mysql-bin.000001,现在刷新了重新开启一个就多了一个mysql-bin.000002
- 数据库中数据表数据迁移方法
dcj3sjt126com
sql
刚开始想想好像挺麻烦的,后来找到一种方法了,就SQL中的 INSERT 语句,不过内容是现从另外的表中查出来的,其实就是 MySQL中INSERT INTO SELECT的使用
下面看看如何使用
语法:MySQL中INSERT INTO SELECT的使用
1. 语法介绍
有三张表a、b、c,现在需要从表b
- Java反转字符串
dyy_gusi
java反转字符串
前几天看见一篇文章,说使用Java能用几种方式反转一个字符串。首先要明白什么叫反转字符串,就是将一个字符串到过来啦,比如"倒过来念的是小狗"反转过来就是”狗小是的念来过倒“。接下来就把自己能想到的所有方式记录下来了。
1、第一个念头就是直接使用String类的反转方法,对不起,这样是不行的,因为Stri
- UI设计中我们为什么需要设计动效
gcq511120594
UIlinux
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用
- JBOSS服务部署端口冲突问题
HogwartsRow
java应用服务器jbossserverEJB3
服务端口冲突问题的解决方法,一般修改如下三个文件中的部分端口就可以了。
1、jboss5/server/default/conf/bindingservice.beans/META-INF/bindings-jboss-beans.xml
2、./server/default/deploy/jbossweb.sar/server.xml
3、.
- 第三章 Redis/SSDB+Twemproxy安装与使用
jinnianshilongnian
ssdbreidstwemproxy
目前对于互联网公司不使用Redis的很少,Redis不仅仅可以作为key-value缓存,而且提供了丰富的数据结果如set、list、map等,可以实现很多复杂的功能;但是Redis本身主要用作内存缓存,不适合做持久化存储,因此目前有如SSDB、ARDB等,还有如京东的JIMDB,它们都支持Redis协议,可以支持Redis客户端直接访问;而这些持久化存储大多数使用了如LevelDB、RocksD
- ZooKeeper原理及使用
liyonghui160com
ZooKeeper是Hadoop Ecosystem中非常重要的组件,它的主要功能是为分布式系统提供一致性协调(Coordination)服务,与之对应的Google的类似服务叫Chubby。今天这篇文章分为三个部分来介绍ZooKeeper,第一部分介绍ZooKeeper的基本原理,第二部分介绍ZooKeeper
- 程序员解决问题的60个策略
pda158
框架工作单元测试
根本的指导方针
1. 首先写代码的时候最好不要有缺陷。最好的修复方法就是让 bug 胎死腹中。
良好的单元测试
强制数据库约束
使用输入验证框架
避免未实现的“else”条件
在应用到主程序之前知道如何在孤立的情况下使用
日志
2. print 语句。往往额外输出个一两行将有助于隔离问题。
3. 切换至详细的日志记录。详细的日
- Create the Google Play Account
sillycat
Google
Create the Google Play Account
Having a Google account, pay 25$, then you get your google developer account.
References:
http://developer.android.com/distribute/googleplay/start.html
https://p
- JSP三大指令
vikingwei
jsp
JSP三大指令
一个jsp页面中,可以有0~N个指令的定义!
1. page --> 最复杂:<%@page language="java" info="xxx"...%>
* pageEncoding和contentType:
> pageEncoding:它