LLM 笔记:Speculative Decoding 投机采样

1 基本介绍 

  • 投机采样(Speculative Sampling)是一种并行预测多个可能输出,然后快速验证并采纳正确部分的加速策略
    • 在不牺牲输出质量的前提下,减少语言模型生成 token 所需的时间
  • 传统的语言模型生成是 串行
    • 必须生成一个,再输入到模型中,才能生成下一个
  • 投机采样的核心思想是
    • 用一个“小模型”提前生成多个候选 token(投机结果),然后用“大模型”一起验证这批候选,并行加速

2 举例 

  • 比如已有 prompt 是:“The weather today is”
  • 小模型(Draft Model)快速生成多个候选 token
    • 例如预测出:"The weather today is [sunny, and, warm, with, ...]" 共 5 个 token
  • 大模型(Target Model)验证这些 token
    • 大模型并行地计算这 5 个 token 的概率;

    • 如果小模型的结果和大模型的前几个 token 一致(大模型在这个token上概率小于小模型的,即小模型“更有把握”),就“采纳”它;如果中途发现不一致,就在那个位置停止,用大模型重新生成。

    • LLM 笔记:Speculative Decoding 投机采样_第1张图片

      •  那么下一轮:
        • LLM 笔记:Speculative Decoding 投机采样_第2张图片

你可能感兴趣的:(机器学习,笔记)