- SIGMOD论文解读|在自下而上优化中添加布隆过滤器
Gauss松鼠会
技术交流数据库gaussdbdatabase
6月22日至27日,2025ACMSIGMOD/PODS国际学术会议在德国柏林举行。25日,华为多伦多分布式调度和数据引擎实验室主任工程师TimothyZeyl受邀出席,就入选的《IncludingBloomFiltersinBottom-upOptimization》论文进行了解读该论文创新性地首次提出了在自下而上的优化器的基于成本的优化过程中添加布隆过滤器(BloomFilter)的技术。该技
- D-FINE使用pth权重批量推理可视化图片
悠悠海风
代码调试深度学习人工智能python目标检测计算机视觉
关于D-FINE相关的内容可参考下面这篇博客:论文解读:ICLR2025|D-FINE_d-fine:redefineregressiontaskindetrsasfine--CSDN博客文章浏览阅读949次,点赞18次,收藏28次。D-FINE是一款功能强大的实时物体检测器,它将DETRs中的边界框回归任务重新定义为细粒度分布细化(FDR),并引入了全局最优定位自蒸馏(GO-LSD),在不引入额
- 《深入浅出多模态》(四):多模态经典模型CLIP
GoAI
深入浅出多模态多模态大模型LLM人工智能
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介
- 深入浅出多模态》(十一)之多模态经典模型:Flamingo系列
GoAI
机器学习多模态大模型人工智能LLM机器学习
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:本作
- 大语言模型全流程开发技术详解:从架构、训练到对齐与量化
艾墨舟启航
大模型实战架构人工智能大语言模型
github:https://github.com/mlabonne/llm-course大语言模型全流程开发技术详解:从架构、训练到对齐与量化大模型实战指南:多模型生态实战与论文解读一、LLM架构(TheLLMarchitecture)不需要对Transformer架构有深入的了解,但了解现代LLM的主要步骤很重要:通过分词化将文本转换为数字,通过包括注意力机制在内的层处理这些分词,最后通过各种
- VLM 系列——Qwen2 VL——论文解读
TigerZ*
AIGC算法AIGC计算机视觉人工智能图像处理
一、概述1、是什么是一系列多模态大型语言模型(MLLM),其中包括2B、7B、72B三个版本,整体采用视觉编码器(标准VIT输出后面接patchmerger)+LLM形式。比较创新的是统一视觉处理方式(3DCNN统一视频、图片)+图像缩放方式(自适应缩放)+3DLLM位置编码。能够处理包括文本、图像在内的多种数据类型,具备图片描述、单图文问答、多图问对话、视频理解对话、json格式、多语言、age
- SAM2论文解读-既实现了视频的分割一切,又比图像的分割一切SAM更快更好
↣life♚
计算机视觉大模型通用模型人工智能计算机视觉深度学习通用分割视频分割算法
code:https://github.com/facebookresearch/sam2/tree/maindemo:https://sam2.metademolab.com/paper:https://ai.meta.com/research/publications/sam-2-segment-anything-in-images-and-videos/这是SAM这是SAM2Facebook
- 【AI论文精读3】RAG论文综述1-P3-检索器
AI完全体
AI论文解读人工智能机器学习深度学习自然语言处理RAG论文阅读论文笔记
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】P1,P2,P4,P5,P6三、检索器在RAG中,有效地从数据源中检索相关文档至关重要。涉及的关键问题包括检索源、检索粒度、检索的预处理以及选择相应的嵌入模型。3.1.检索源RAG依赖外部知识来增强LLM,而检索源(RetrievalSource)的类型(数据结构)和检索单元的粒度都会影响最终的生成结果。3.1.1.数据结构1.非结构化数
- 【论文解读】s3: 仅 2.4K 数据即可 RL 训练Search Agent
1stauthro:PatrickJiangpaper:[2505.14146]s3:YouDon’tNeedThatMuchDatatoTrainaSearchAgentviaRLcode:pat-jj/s3:s3-EfficientYetEffectiveSearchAgentTrainingviaRLforRAG5.总结(结果先行)s3框架以其“解耦搜索与生成、仅训练搜索代理、采用GBR奖励
- 【论文解读】OmegaPRM:MCTS驱动的自动化过程监督,赋能LLM数学推理新高度
vlln
Search&Learning人工智能深度学习搜索引擎神经网络transformer
1stauthorLiangchenLuoYinxiaoLiu-GoogleScholarpaper:[2406.06592]ImproveMathematicalReasoninginLanguageModelsbyAutomatedProcessSupervisioncode:sanowl/OmegaPRM:thisisanimplementationforthepaperImprov
- 活动邀请 | SECon 全球软件工程技术大会深圳站将于6月20—21日举办!
github
SECon全球软件工程技术大会将于6月20日——6月21日在深圳举办!大会精心设置了16个专场,内容涵盖AI前沿论文解读、大数据平台与架构实践、大前端架构实践、AI知识工程体系:从零散知识到流水线、DeepSeek技术前瞻与应用实践、AI时代数据架构的演进、从Agent到Multi-Agent的智能跃迁、高可用架构、垂直深耕:小模型、大智慧、数据分析场景中AI应用、AI+研发的智能化升级、多模态生
- CON:Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models 论文解读
亦万
大模型RAGCOTCON
目前RALM主要存在两个问题:搜索结果误导性:搜索结果依赖其召回和排序,所以不一定和问题相关,不相关的结果融合到大模型中会给大模型带来误导导致错误的答案(甚至有的时候大模型依靠内部记忆能够正确回答);回复幻觉问题:针对无法回答的问题(不管是搜索结果还是内部记忆),大模型有时也会一本正经的胡说八道。本篇paperCON(Chain-of-Note)主要就是解决上面两个问题:如下图所示,有三种情况搜索
- 【2025智源大会论文解读】智能体-林衍凯
weixin_37763484
大模型人工智能算法
另一位人大老师的近期工作汇总,涉及数据合成(生成训练数据,指导agent模型)、奖励模型训练(用于监督agent进行规划)、主动行动(指导agent主动为人类提供服务)、工具选择(支持1600+工作调用)、多模态训练(操作手机)等。0新框架具体实现还没有找到0.1MiniCPM4-Survey:MiniCPM4-Survey是由THUNLP、中国人民大学和ModelBest联合开发的开源大语言模型
- [论文阅读] 人工智能 | 搜索增强LLMs的用户偏好与性能分析
张较瘦_
前沿技术人工智能论文阅读
【论文解读】SearchArena:搜索增强LLMs的用户偏好与性能分析论文信息作者:MihranMiroyan,Tsung-HanWu,LoganKing等标题:SearchArena:AnalyzingSearch-AugmentedLLMs来源:arXivpreprintarXiv:2506.05334v1,2025一、研究背景:当LLMs需要“上网查资料”时,我们如何评估它?想象你在问AI
- 【论文解读实战篇】Cheetah mini MPC+WBC控制Whole-Body Impulse Control and Model Predictive Control
RoboticsTechLab
机器人实战项目机器人算法
文章目录一、简介二、控制架构1、控制流程2、摆动腿落点规划器3、状态估计器(用于估计躯干的位置、速度、姿态)4、步态调度器和步态规划器三、模型预测控制MPC1.MPC使用的集中质量动力学模型(用于预测泛作用力f)2.模型简化假设四、WBC全身脉冲控制1.WBC使用的多体动力学模型(计算每个关节的力矩)2.优先任务执行(为了计算关节位置、速度和加速度)3.二次规划(为了计算关节转矩指令)4.计算最终
- 【论文解读】CVPR 2024 DSL-FIQA :全新人脸面部图像质量评估算法(附论文地址)
牧锦程
论文解读算法
论文地址:https://openaccess.thecvf.com/content/CVPR2024/papers/Chen_DSL-FIQA_Assessing_Facial_Image_Quality_via_Dual-Set_Degradation_Learning_and_CVPR_2024_paper.pdf这篇论文标题为"DSL-FIQA:AssessingFacialImageQu
- 综述论文解读:Editing Large Language Models: Problems, Methods, and Opportunities
cnblogs.com/qizhou/
语言模型人工智能自然语言处理
论文为大语言模型知识编辑综述,发表于自然语言处理顶会ACL(原文链接)。由于目前存在广泛的模型编辑技术,但一个统一全面的分析评估方法,所以本文: 1、对LLM的编辑方法进行了详尽、公平的实证分析,探讨了它们各自的优势和劣势。 2、构建了一个新的数据集,旨在揭示当前模型编辑方法的缺点,特别是泛化和效率方面。 3、概述了模型编辑领域未来潜在的研究机会。 阅读本文请同时参考原始论文图表。问题
- 论文解读:Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adapters
cnblogs.com/qizhou/
论文发表于人工智能顶会NeurIPS(原文链接)。当前的模型编辑器会因多次编辑损害模型性能,提出用于连续编辑的通用检索适配器(GeneralRetrievalAdaptersforContinualEditing,GRACE):使用一个类似字典的结构(适配器)为需要修改的潜在表示构建新的映射,通过更新适配器来实现持续的模型行为编辑。方法 GRACE是一种不修改模型权重编辑预训练模型行为的方法
- 论文解读:Locating and Editing Factual Associations in GPT(ROME)
论文发表于人工智能顶会NeurIPS(原文链接),研究了GPT(GenerativePre-trainedTransformer)中事实关联的存储和回忆,发现这些关联与局部化、可直接编辑的计算相对应。因此: 1、开发了一种因果干预方法,用于识别对模型的事实预测起决定性作用的神经元。 2、为了验证这些神经元是否对应于事实关联的回忆,使用秩一模型编辑(Rank-OneModelEditing,
- [论文阅读] 人工智能+软件工程 | MemFL:给大模型装上“项目记忆”,让软件故障定位又快又准
张较瘦_
前沿技术论文阅读人工智能软件工程
【论文解读】MemFL:给大模型装上“项目记忆”,让软件故障定位又快又准论文信息arXiv:2506.03585ImprovingLLM-BasedFaultLocalizationwithExternalMemoryandProjectContextInseokYeo,DuksanRyu,JongmoonBaikSubjects:SoftwareEngineering(cs.SE)一、研究背景:
- [论文阅读] 人工智能 | 当AI遇见绿色软件工程:可持续AI实践的研究新方向
张较瘦_
前沿技术人工智能
【论文解读】当AI遇见绿色软件工程:可持续AI实践的研究新方向论文信息作者:MajaH.Kirkeby,EnriqueBarbaRoque,JustusBogner等标题:GreeningAI-enabledSystemswithSoftwareEngineering:AResearchAgendaforEnvironmentallySustainableAIPractices年份:2025来源:
- 【论文解读】MemGPT: 迈向为操作系统的LLM
vlln
transformer人工智能深度学习自然语言处理
1stauthor:CharlesPackerpaperMemGPT[2310.08560]MemGPT:TowardsLLMsasOperatingSystemscode:letta-ai/letta:Letta(formerlyMemGPT)isthestatefulagentsframeworkwithmemory,reasoning,andcontextmanagement.这个项目现在已
- 科研学习 论文解读——面向电商内容安全风险管控的协同过滤推荐算法研究(1)
2401_84296945
学习安全推荐算法
面向电商内容安全风险管控的协同过滤推荐算法研究-中国知网(cnki.net)")面向电商内容安全风险管控的协同过滤推荐算法研究*摘要:**[目的/意义]随着电商平台商家入驻要求降低以及商品上线审核流程简化,内容安全风险问题成为协同过滤推荐算法伦理审查的核心问题之一。[方法/过程]本文将内容安全风险问题纳入用户协同过滤推荐算法的优化过程,提出一种改进的推荐算法。首先,采用混合研究方法对内容安全风险商
- Transformer目标检测 | DETR论文解读
DeepDriving
自动驾驶与深度学习transformer目标检测深度学习
0.前言DETR是首个将Transformer应用到2D目标检测任务中的算法,由Facebook于2020年在论文《End-to-EndObjectDetectionwithTransformers》中提出。与传统目标检测算法不同的是,DETR将目标检测任务视为一个直接的集合预测问题,采用基于集合的全局损失通过二分匹配实现一对一的预测输出,不需要非极大值抑制(NMS)和手工设计Anchor这些操作
- 【Strip-MLP论文解读】
A man protect you
计算机视觉图像处理
Strip-MLPAbstractIntroductionMethod——OverallArchitecturePatchEmbeddingPatchMergingMixingBlockStripMixingBlockStripMLPLayer:CascadeGroupStripMixingModule(CGSMM):LocalStripMixingModule(LSMM):ChannelMixi
- 《深入浅出多模态》(六): 多模态经典模型BLIP
GoAI
深入浅出多模态多模态大模型BLIPLLM人工智能
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:</
- A Survey on Multimodal Large Language Models论文解读
call me by ur name
largemodel语言模型人工智能自然语言处理
AbstractRecently,MultimodalLargeLanguageModel(MLLM)representedbyGPT-4Vhasbeenanewrisingresearchhotspot,whichusespowerfulLargeLanguageModels(LLMs)asabraintoperformmultimodaltasks.Thesurprisingemergentc
- ICLR2024论文解读|DP-OPT: MAKE LARGE LANGUAGE MODEL YOUR PRIVACY-PRESERVING PROMPT ENGINEER差分隐私离线提示微调
paixiaoxin
论文合集文献阅读知识图谱人工智能自然语言处理语言模型大型语言模型数据隐私
论文标题DP-OPT:MAKELARGELANGUAGEMODELYOURPRIVACY-PRESERVINGPROMPTENGINEER差分隐私离线提示微调:让大型语言模型成为你的隐私保护提示工程师论文链接DP-OPT:MAKELARGELANGUAGEMODELYOURPRIVACY-PRESERVINGPROMPTENGINEER论文下载论文作者JunyuanHong,JiachenT.Wa
- 【AI应用】免费的文本转语音工具:微软 Edge TTS 和 开源版 ChatTTS 对比
AI完全体
AI应用人工智能机器学习TTSEdgeChatTTS文本转语音AI应用
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】【读书与思考】【AI应用】我试用了下EdgeTTS,感觉还不错,不过它不支持克隆声音(比如自己的声音)微软EdgeTTS和开源版ChatTTS都是免费的文本转语音(TTS)工具,但它们在技术架构、语音质量、使用方式等方面有所不同,适用于不同的使用场景。以下是详细对比:1.EdgeTTSvs.ChatTTS总览对比项微软Edge
- VLM 系列——MiniCPM-Llama3-V 2.5——论文解读
TigerZ*
AIGC算法AIGC人工智能transformer
一、概述1、是什么是一款面向终端设备的多模态大型语言模型(MLLM),论文全称《MiniCPM-V:AGPT-4VLevelMLLMonYourPhone》,它专注于实现在手机等资源受限设备上的高级AI功能,参数8B(llama37B+SigLIPViT-400m/14+视觉标记压缩层)。该模型能够处理包括文本、图像在内的多种数据类型,具备图片描
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author
[email protected]
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本