- BEYOND BINARY REWARDS: TRAINING LMS TOREASON ABOUT THEIR UNCERTAINTY
樱花的浪漫
大模型与智能体对抗生成网络与动作识别强化学习人工智能语言模型自然语言处理机器学习深度学习
https://gist.github.com/josherich/8a30dbf3d6ae0cae1048c3331f38fe80https://gist.github.com/josherich/8a30dbf3d6ae0cae1048c3331f38fe801引言与此担忧一致,研究表明,即使最初校准良好的大型语言模型(LLMs)在RL训练后也会变得过度自信(Lengetal.,2
- Gradient-Adaptive Policy Optimization:Towards Multi-Objective Alignment of Large Language Models
樱花的浪漫
大模型与智能体对抗生成网络与动作识别强化学习语言模型人工智能自然语言处理深度学习机器学习
2025.acl-long.549.pdfhttps://aclanthology.org/2025.acl-long.549.pdf1.概述大型语言模型(LLMs)(Anthropic,2023;OpenAI,2024)已经在广泛的实际应用中展示了显著的能力(Bubecketal.,2023),包括内容创作(Yuanetal.,2022)、编程辅助(Chenetal.,2021;Gaoetal.
- Uncovering Bias in Large Vision-Language Models at Scale with Counterfactuals
樱花的浪漫
因果推断大模型与智能体人工智能算法机器学习语言模型自然语言处理
UncoveringBiasinLargeVision-LanguageModelsatScalewithCounterfactuals-ACLAnthologyhttps://aclanthology.org/2025.naacl-long.305/1.概述最近,大型视觉-语言模型(LVLMs)因其能够将语言模型(LLMs)的对话能力扩展到多模态领域而受到欢迎。具体来说,LVLMs可以根据文本提
- 构建高效 RAG 流程的七个关键点及其落地实践
charles666666
搜索引擎大数据需求分析交互笔记数据库
人工智能应用浪潮中,检索增强生成(RAG)技术凭借着结合大型语言模型(LLMs)的生成能力和信息检索系统的独特优势,成为了各企业挖掘数据价值、提升业务智能化水平的关键手段之一。然而,构建一个高效且精准的RAG流程并非易事,其中存在着诸多关键点和挑战。作为一名非资深IT技术顾问,我将基于丰富的实战经验,为大家深入剖析构建高效RAG流程的七个关键点及其落地实践。一、文档解析:混合格式的“第一道坎”在企
- LIMO:仅需817样本激活大模型数学推理能力,挑战“数据规模至上”传统范式
大千AI助手
人工智能#OTHER#Prompt人工智能机器学习神经网络算法大模型LIMOLessIsMore
“以认知模板唤醒沉睡知识,让推理能力在精不在多”LIMO是由上海交通大学、SII(ShanghaiArtificialIntelligenceLaboratory)、GAIRLab联合提出的突破性研究(2025年2月发表),其核心颠覆了传统AI领域“复杂推理需海量训练数据”的认知,证明仅用817个高质量样本即可激发大语言模型(LLMs)的数学推理能力,在AIME、MATH等竞赛级任务中超越使用10
- AI人工智能的SGLang、vllm和YaRN大语言模型服务框架引擎的对比
没刮胡子
Linux服务器技术软件开发技术实战专栏人工智能AI人工智能语言模型自然语言处理
简介SGLang、vLLM和YaRN在大语言模型中的应用场景和功能特点有所不同,具体如下:SGLang定位:是一种专为大型语言模型(LLMs)和视觉语言模型(VLMs)设计的高效服务框架。核心特点:通过优化前端和后端语言的协同设计,提升与模型的交互速度和可控性。前端语言灵活,原生支持Python语法,提供多种原语和控制机制;后端运行时使用RadixAttention技术实现前缀缓存和跳跃式解码,支
- 利用 Tavily Search API 提升 AI 代理的搜索能力
VYSAHF
人工智能microsoftpython
技术背景介绍在人工智能代理的开发中,实时、准确的数据获取能力至关重要。TavilySearchAPI是专为大型语言模型(LLMs)设计的搜索引擎,它能够以极高的速度提供实时、准确且事实驱动的结果,对AI开发者来说是一项极具价值的工具。核心原理解析TavilySearch通过专门优化的搜索算法和高效的索引机制,确保其能够应对复杂的自然语言查询。它不仅提供传统的文本结果,还能返回结构化的答案和相关的多
- Deja Vu: 利用上下文稀疏性提升大语言模型推理效率
AI专题精讲
模型加速人工智能模型加速AI技术应用
温馨提示:本篇文章已同步至"AI专题精讲"DejaVu:利用上下文稀疏性提升大语言模型推理效率摘要拥有数百亿参数的大语言模型(LLMs)催生了一系列令人振奋的AI应用。然而,在推理阶段它们计算开销极大。稀疏化是一种自然的降本策略,但现有方法要么需要代价高昂的重新训练,要么必须放弃LLM的“in-contextlearning”能力,要么在现代硬件上无法带来真实的墙钟时间加速。我们提出**上下文稀疏
- Java开发者,用LLM和AI Agent打造你的智能应用:从理论到实践!
程序猿Mr.wu
《AI+Java前沿工坊》人工智能java开发语言
摘要你是否认为AIAgent和大型语言模型(LLMs)是Python专属?那你就错了!Java,作为企业级应用开发的主力军,正在以前所未有的速度拥抱AI浪潮。本文将手把手教你如何利用Java生态系统,集成主流LLMs、构建强大的AIAgent,并实现其在生产环境中的部署。我们将深入探讨Java在AIAgent领域的独特优势,并通过实战代码,让你快速掌握如何用Java打造具备自主思考、决策和执行能力
- 想进大厂?LLMs 10道面试题提前看,有问有答,图文详解!
AI大模型-大飞
人工智能大模型chatgpt产品经理AI程序员大模型面试题
一、微调与优化21、LLM的微调流程是什么?微调(Fine-tuning)LLMs指的是在特定任务或数据上对预训练好的模型进行进一步训练,使其能更好地适应目标场景的过程,其主要流程如下:数据准备:数据收集:根据目标任务收集高质量、有代表性的数据;数据预处理:对原始数据进行清洗,如去除噪声、重复项、不相关内容等。根据模型输入要求对数据进行格式化;数据划分:将数据分为训练集、验证集和测试集,为后续模型
- NLP论文速读|chameleon:一个即插即用的组合推理模块Plug-and-Play Compositional Reasoning with Large Language Models
Power2024666
NLP论文速读自然语言处理人工智能机器学习深度学习nlp语言模型
论文速读|Chameleon:Plug-and-PlayCompositionalReasoningwithLargeLanguageModels论文信息:简介:该论文介绍了一个名为Chameleon的人工智能系统,旨在解决大型语言模型(LLMs)在处理复杂推理任务时存在的固有限制,例如无法访问最新信息、使用外部工具以及执行精确的数学和逻辑推理。Chameleon通过插入即用模块增强LLMs,使其
- 迈向大型推理模型:基于大型语言模型的强化推理综述(附教程)
LLM大模型
人工智能自然语言处理知识库本地化部署吴恩达大模型RAG
语言长期以来被认为是人类推理的基本工具。大型语言模型(LLM)的突破激发了大量研究兴趣,推动了利用这些模型解决复杂推理任务的探索。研究人员通过引入“思维”这一概念——即一系列代表推理过程中的中间步骤的标记——超越了简单的自回归标记生成。这一创新范式使LLMs能够模仿复杂的人类推理过程,如树搜索和反思性思维。近年来,学习推理的趋势逐渐兴起,强化学习(RL)被应用于训练LLMs掌握推理过程。这种方法通
- 掌握 RAG:使用 Langchain 和 Ollama 创建本地智能应用程序
知世不是芝士
langchain人工智能ai大模型大语言模型ollama本地部署大模型大模型技术
引言随着大型语言模型(LLMs)的兴起,我们见证了一种新的工具类别的诞生。然而,LLMs也存在局限性,尤其是当面对需要最新信息或专有数据的商业用例时。本文将介绍如何通过微调和RAG来解决这些问题。LLMs的局限性传统LLMs训练成本高昂,且只能访问公共信息。对于商业用途,需要模型能够提供基于内部知识的最新回应。文章介绍了两种解决这一问题的方法:微调和RAG。微调微调是针对特定数据集进一步训练预训练
- GENERALIST REWARD MODELS: FOUND INSIDE LARGELANGUAGE MODELS
樱花的浪漫
大模型与智能体对抗生成网络与动作识别强化学习语言模型人工智能自然语言处理深度学习机器学习计算机视觉
GeneralistRewardModels:FoundInsideLargeLanguageModelshttps://arxiv.org/pdf/2506.232351.概述将大型语言模型(LLMs)与复杂的人类价值观(如乐于助人和诚实)对齐,仍然是人工智能发展中的一个核心挑战。这项任务的主要范式是来自人类反馈的强化学习(RLHF)[Christianoetal.,2017;Baietal.,
- 实现大语言模型与应用的无缝对接
meslog
技术分享语言模型microsoft人工智能
在当今人工智能快速发展的时代,大语言模型(LLMs)已经成为众多应用的核心驱动力。然而,如何让这些强大的模型与各种数据源和工具进行有效集成,仍然是一个挑战。ModelContextProtocol(MCP)正是为解决这一问题而设计的开放协议,它标准化了应用程序如何向大语言模型提供上下文信息。本文将介绍MCP的基本概念,并通过C#SDK展示如何实现客户端和服务器端的交互。什么是MCP?ModelCo
- LLM4SR: A Survey on Large Language Models for Scientific Research
UnknownBody
LLMDailySurveyPaper语言模型人工智能自然语言处理
文章主要内容文章围绕大语言模型(LLMs)在科学研究中的应用展开,系统探讨了其在科研各关键阶段的作用、方法、挑战及未来方向。科学假设发现:LLMs生成科学假设的研究源于“基于文献的发现”和“归纳推理”。现有方法通过灵感检索策略、反馈模块等组件提升假设生成质量,相关基准测试分为基于文献和数据驱动两类,评估指标涵盖新颖性、有效性等。虽取得一定成果,但面临实验验证困难、依赖现有LLMs能力等挑战。实验规
- 大模型本地部署-dify私有化部署-教程
一、简介dify是一个开源的LLM应用开发平台。其直观的界面结合了AI工作流、RAG管道、Agent、模型管理、可观测性功能等,可以让您快速从原型到生产。二、核心功能列表1、工作流:在画布上构建和测试功能强大的AI工作流程。2、全面的模型支持:与数百种专有/开源LLMs以及数十种推理提供商和自托管解决方案无缝集成,涵盖GPT、Mistral、Llama3以及任何与OpenAIAPI兼容的模型。完整
- CPO:对比偏好优化—突破大型语言模型在机器翻译中的性能边界
AI专题精讲
强化学习人工智能强化学习AI技术应用
温馨提示:本篇文章已同步至"AI专题精讲"CPO:对比偏好优化—突破大型语言模型在机器翻译中的性能边界摘要中等规模的大型语言模型(LLMs),如参数量为7B或13B的模型,在机器翻译(MT)任务中展现出良好性能。然而,它们仍未能达到最先进的传统编码器-解码器翻译模型,或是如GPT-4(OpenAI,2023)等更大规模LLM的表现。在本研究中,我们致力于弥合这一性能差距。我们首先评估了在机器翻译任
- [论文阅读]Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smal
0x211
论文阅读语言模型人工智能自然语言处理
中文译名:逐步蒸馏!以较少的训练数据和较小的模型规模超越较大的语言模型发布链接:http://arxiv.org/abs/2305.02301AcceptedtoFindingsofACL2023阅读原因:近期任务需要用到蒸馏操作,了解相关知识核心思想:改变视角。原来的视角:把LLMs视为噪声标签的来源。现在的视角:把LLMs视为能够推理的代理。方法好在哪?需要的数据量少,得到的结果好。文章的方法
- 详解LLMOps,将DevOps用于大语言模型开发
大家好,在机器学习领域,随着技术的不断发展,将大型语言模型(LLMs)集成到商业产品中已成为一种趋势,同时也带来了许多挑战。为了有效应对这些挑战,数据科学家们转向了一种新型的DevOps实践LLM-OPS,专为大型语言模型的开发和维护而设计。本文将介绍LLM-OPS的核心思想,并分析这一策略如何帮助数据科学家更高效地运用DevOps的优秀实践,从而在语言模型的开发和部署过程中,提升工作效率和成果的
- 从数据集视角看——大语言模型(LLMs)的训练、微调和推理
爱看烟花的码农
AIGCNLP语言模型人工智能自然语言处理
1.大语言模型训练的整体框架大语言模型的训练是一个复杂的过程,涉及数据准备、模型架构、优化策略和推理部署。以下是整体框架的详细分解:1.1训练阶段预训练:在海量文本数据上学习通用语言表示,类似于“学习语言的百科全书”。微调:针对特定任务调整模型参数,类似于“针对考试复习重点内容”。指令微调:在对话或指令数据集上优化,使模型更适合交互式任务。推理:使用训练好的模型进行预测或生成。1.2核心组件数据集
- 大型语言模型中的提示工程系统综述:技术与应用
AI专题精讲
Paper阅读语言模型人工智能自然语言处理
摘要提示工程已成为扩展大型语言模型(LLMs)和视觉语言模型(VLMs)能力的不可或缺的技术。这种方法利用任务特定的指令(称为prompt),在不修改核心模型参数的情况下增强模型效能。与更新模型参数不同,prompt仅通过给定指令即可引出所需的模型行为,从而实现预训练模型在下游任务中的无缝集成。prompt可以是提供上下文以引导模型的自然语言指令,也可以是激活相关知识的学习向量表示。这一新兴领域已
- 推测性解码:加速多模态大型语言模型的推理
人工智能培训咨询叶梓
人工智能前沿语言模型人工智能自然语言处理计算机视觉推理多模态算法
大模型(LLMs)以其卓越的性能在多个应用场景中大放异彩。然而,随着应用的深入,这些模型的推理速度问题逐渐凸显。为了解决这一挑战,推测性解码(SpeculativeDecoding,SPD)技术应运而生。本文深入探讨了SPD在多模态大型语言模型(MLLMs)中的应用,尤其是针对LLaVA7B模型的优化。MLLMs通过融合视觉和文本数据,极大地丰富了模型与用户的互动,但同时也面临着自回归生成和内存带
- 中文大模型的技术债问题
大鹏的NLP博客
大模型transformer大模型
中文大模型的技术债问题摘要随着中文大语言模型(LargeLanguageModels,LLMs)在自然语言处理(NLP)领域的广泛应用,其研发和部署过程中积累的“技术债”(TechnicalDebt)问题日益突出。本文系统性地分析了中文大模型在数据采集、预训练、微调、评估与部署等生命周期各阶段产生的技术债类型,包括代码复杂性、数据隐患、训练流程依赖、工具链碎片化、模型解释性差、隐性资源耦合等问题,
- 个人总结 - LangChain4j应用(1)
艾露z
AIjavalangchainai人工智能
个人总结-LangChain4j应用(1)github:Releases·langchain4j/langchain4j·GitHub官方文档:Introduction|LangChain4j简要介绍:LangChain4j是一个旨在简化大语言模型(LLMs)与Java应用程序集成的框架。ChatandLanguageModels:LanguageModel:最简单的聊天模型,简单的接收字符串,不
- 解密企业级大模型智能体Agentic AI 关键技术:MCP、A2A、Reasoning LLMs- GPT源代码解析
大模型与Agent智能体
A2AMCPDeepSeekA2AMCPManusADK
解密企业级大模型智能体AgenticAI关键技术:MCP、A2A、ReasoningLLMs-GPT源代码解析我们可以稍微看一下,这是我们GPT的基于它的源代码产生的可视化的内容。这边是model,我们在谈这个sampling的时候,本身首先就是说它这个probabilitydistribution,会有很多的参数对它进行影响。例如temperature,如果你是hightemperature的话
- 10.5 实战ChatGLM3私有数据微调之提示工程:批量生成数据稳定性秘籍
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力机器学习深度学习人工智能语言模型
实战ChatGLM3私有数据微调之提示工程:批量生成数据稳定性秘籍在当今人工智能蓬勃发展的时代,大语言模型(LLMs)如ChatGLM3的出现,为自然语言处理领域带来了革命性的变化。企业和开发者们纷纷寻求利用这些强大的模型来构建定制化的应用,以满足特定业务需求。其中,使用私有数据对ChatGLM3进行微调,成为了实现差异化竞争和提供个性化服务的关键途径。然而,在微调过程中,确保批量生成数据的稳定性
- 从被动检索到主动思考:Naive RAG 到 Agentic RAG 的架构演进与关键技术解析
一休哥助手
人工智能架构RAG
摘要随着大语言模型(LLMs)的广泛应用,检索增强生成(Retrieval-AugmentedGeneration,RAG)技术已成为解决模型知识滞后与幻觉问题的核心方案。本文深入剖析从基础NaiveRAG到新一代AgenticRAG的架构演进路径,聚焦关键技术创新点(如递归检索、自适应查询改写、工具集成、多智能体协作),并通过架构图对比与案例分析,揭示其在复杂任务处理中的范式转变。全文超过500
- 【AI论文】FineWeb2:一个管道,规模适配所有语言——使预训练数据处理适应每一种语言
东临碣石82
人工智能深度学习机器学习
摘要:预训练最先进的大型语言模型(LLMs)需要大量干净且多样的文本数据。尽管近期在开放开发大型高质量英文预训练数据集方面取得了显著进展,但训练性能出色的多语言大型语言模型仍面临挑战,这很大程度上是因为难以针对大量语言定制过滤和去重流程。在本研究中,我们基于FineWeb引入了一种全新的预训练数据集整理流程,该流程可自动适配任意语言。我们通过一组涵盖九种不同语言的实验,对流程设计进行了广泛消融研究
- 大语言模型应用指南:ReAct 框架
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
大语言模型应用指南:ReAct框架关键词:大语言模型,ReAct框架,自然语言处理(NLP),模型融合,多模态学习,深度学习,深度学习框架1.背景介绍1.1问题由来近年来,深度学习技术在自然语言处理(NLP)领域取得了显著进展。尤其是大语言模型(LargeLanguageModels,LLMs),如BERT、GPT系列等,通过在大规模无标签数据上进行预训练,获得了强大的语言理解和生成能力。然而,预
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla