- 007 LazyPrim 算法求最小生成树
乌鲁木齐001号程序员
在文件中存储的带权无向图81645.3547.3757.2807.1615.3204.3823.1717.1902.2612.3613.2927.3462.4036.5260.5864.93LazyPrim的实现-O(ElogE)从第一个节点开始做一个切分,将该点的所有临边都维护进横切边集合pq中;从横切边集合pq中取出权最小的边e,确保e两头的端点不在切分的同一边;将这条权最小的边e纳入正在生成
- 图论的题目整合(Dijkstra)
_Free_fish_
图论算法
前置知识:Dijkstra题目1AT_abc070_d[ABC070D]TransitTreePath由于点KKK是固定的,并且是无向图(题目说是树),其实可以理解为求点KKK到点xjx_jxj的最短路加上点KKK到点yjy_jyj的最短路。由于边权cic_ici的范围是1≤ci≤1091\lec_i\le10^91≤ci≤109,没有负数,所以用Dijkstra以KKK为起点跑最短路。#incl
- 最短Hamilton路径
「止于纸扇」
#代码模板C++学习笔记算法数据结构
最短Hamilton路径在图论中,哈密顿路径是指在一个无向图中,经过所有顶点恰好一次且仅一次的路径。在这个问题中,我们将探讨如何在C++中找到给定图中的最短Hamilton路径。原理哈密顿路径问题可以通过动态规划算法求解。动态规划的基本思想是将原问题分解为子问题,然后从最小的子问题开始逐步解决,最终得到原问题的解。对于一个有n个顶点的无向图G(V,E),我们可以使用一个二维数组dp[i][j]来表
- AcWing算法基础课笔记——最短Hamilton路径
SharkWeek.
AcWing算法笔记动态规划c++
最短Hamilton路径题目给定一张n个点的带权无向图,点从0~n-1标号,求起点0到终点n-1的最短Hamilton路径。Hamilton路径的定义是从0到n-1不重不漏地经过每个点恰好一次。输入格式第一行输入整数n。接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(记为a[i,j])。对于任意的x,y,z,数据保证a[x,x]=0,a[x,y]=a[y,x]并且a[x,y]+a[
- 洛谷刷题6.22&&6.21
圆头猫爹
刷题记录算法leetcode数据结构
P2910[USACO08OPEN]ClearAndPresentDangerS代码思路总结(基于洛谷P2910问题)该代码解决的是图上的最短路径累积问题:给定一个有向图(或无向图,代码中未区分)和一系列必须按顺序访问的点,计算从序列起点到终点依次访问相邻点所走的最短路径总长度。核心步骤:输入处理:读入点数n和访问序列长度m。读入长度为m的访问序列v[](v[1]是起点,v[m]是终点)。读入n×
- 数据结构与算法分析-C++描述 第10章 算法设计技巧(贪心算法之霍夫曼编码)
qq_37172182
C++数据结构与算法分析-C++描述算法设计技巧贪心算法霍夫曼编码
算法设计技巧一:贪心算法(GreedyAlgorithm)在第9章曾多次遇到贪心算法的应用,如解决单源最短路径的Dijkstra算法,最小生成树的Prim算法,最小生成树的Kruskal算法。贪心算法分阶段进行。在每一阶段可以认为所做的决定是最好的,而不考虑将来的结果。一般来说,这意味着选择是某个局部优的。这种“眼下能够拿到的就拿”的策略即是这类算法名称的来源。当算法结束时,我们希望局部最优就是全
- 【AI 赋能:Python 人工智能应用实战】6. 概率图模型入门:贝叶斯网络与隐马尔可夫模型实战
AI_DL_CODE
AI赋能:Python人工智能应用实战人工智能python概率图模型贝叶斯网络隐马尔可夫模型概率推断HMM
摘要:本文系统介绍概率图模型的基础理论与实战应用,聚焦贝叶斯网络与隐马尔可夫模型(HMM)两大核心模型。理论部分解析概率图模型的分类体系:贝叶斯网络(有向无环图)用于静态不确定性建模,代表算法为变量消元,适用于医疗诊断;马尔可夫网络(无向图)依托置信传播,应用于图像分割;HMM(时序链结构)通过维特比算法等解决语音识别等时序问题。详解贝叶斯网络三要素:结构学习(爬山算法)、参数学习(最大似然与贝叶
- lab2-2 Dijkstra算法求由顶点a到顶点h的最短路径
西一安鲜
算法
1.问题[描述算法问题,首选形式化方式(数学语言),其次才是非形式化方式(日常语言)]对于下图使用Dijkstra算法求由顶点a到顶点h的最短路径,按实验报告模板编写算法。2.解析Dijkstra算法(单源点路径算法,要求:图中不存在负权值边),Dijkstra算法使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树。Dijkstra(迪杰斯特拉)算法是典型的
- 【华为OD机试真题 2025B卷】145、无向图染色 | 机试真题+思路参考+代码解析(C++、Java、Py、C语言、JS)
KFickle
最新华为OD机试(C++JavaPyCJS)+OJ华为odc++javac语言华为OD机试真题无向图染色
文章目录一、题目题目描述输入输出样例1样例2二、代码与思路参考C++代码Java代码Python代码C语言代码JS代码订阅本专栏后即可解锁在线OJ刷题权限个人博客首页:KFickle专栏介绍:最新的华为OD机试真题,使用C++,Java,Python,C语言,JS五种语言进行解答,每个题目都包含解题思路,五种语言的解法,每日持续更新中,订阅后支持开通在线OJ测试刷题!!!一次订阅永久享受更新,有代
- Gcn符号笔记
happydog007
笔记python
KeyPoints邻接矩阵A通常表示无向图中结点之间的连接,尺寸为[N,N],其中N是结点的数量。度矩阵D是对角矩阵,尺寸为[N,N],对角元素表示每个结点的度。结点特征向量矩阵XXX的尺寸为[N,C],其中C是每个结点的特征数量,包含结点的额外属性,如年龄或文本特征。邻接矩阵A邻接矩阵A是一个方阵,用于表示图中结点之间的连接关系。对于无向图,A[i,j]=1A[i,j]=1A[i,j]=1表示结
- Swift 图论实战:DFS 算法解锁 LeetCode 323 连通分量个数
网罗开发
Swift算法swift图论
文章目录摘要描述示例题解答案DFS遍历每个连通区域Union-Find(并查集)题解代码分析(Swift实现:DFS)题解代码详解构建邻接表DFS深度优先搜索遍历所有节点示例测试及结果示例1示例2示例3时间复杂度分析空间复杂度分析总结摘要图是算法中最具挑战性的结构之一,而“连通分量”这个词听起来也有点像社交网络里的“圈子”概念。给你一张无向图,节点编号从0到n-1,现在请你找出这个图中到底有多少个
- C++最小生成树算法详解
你的冰西瓜
c++算法图论最小生成树
C++最小生成树算法详解引言在图论中,最小生成树(MinimumSpanningTree,MST)是一个非常重要的概念。对于给定的带权无向连通图,最小生成树是一棵包含图中所有顶点且边权之和最小的树。它在网络设计、电路布线等实际应用中具有广泛的意义。本文将详细介绍两种常见的最小生成树算法:Prim算法和Kruskal算法,并提供C++实现代码。一、最小生成树的基本概念1.1生成树一个连通图的生成树是
- 算法学习笔记:10.Prim 算法——从原理到实战,涵盖 LeetCode 与考研 408 例题
呆呆企鹅仔
算法学习算法学习笔记JavaPrim
在图论的世界里,最小生成树(MinimumSpanningTree,MST)是一个至关重要的概念,它在通信网络设计、电路布线、交通规划等领域有着广泛的应用。求解最小生成树的算法中,Prim算法以其独特的“逐步扩展”思想占据着重要地位。Prim算法的基本概念在正式介绍Prim算法之前,我们先回顾一下最小生成树的定义:对于一个具有n个顶点的带权连通图,其最小生成树是包含所有n个顶点的一棵无环子图,且该
- 算法分析与设计实验2:实现克鲁斯卡尔算法和prim算法
表白墙上别挂我
算法笔记经验分享
实验原理(一)克鲁斯卡尔算法:一种用于求解最小生成树问题的贪心算法,该算法的基本思想是按照边的权重从小到大排序,然后依次选择边,并加入生成树中,同时确保不会形成环路,直到生成树包含图中所有的顶点为止。具体步骤:边的排序:将所有边按照权重从小到大排序。初始化:创建一个空的生成树(可以是一个空的图结构),以及一个用于记录每个顶点所属集合(或称为连通分量)的数据结构(例如并查集)。边的选择:依次选择排序
- 数据结构复习提纲
DeadPool loves Star
数据结构复习大纲
数据结构复习提纲算法的五个特征设计算法通常应考虑线性表线性表的特性广义表的结构特点树的有关术语二叉树特点满二叉树完全二叉树二叉树的性质二叉树的按层遍历算法等价二叉树等价二叉树树的表示方法Huffman树的相关概念内外节点的相关概念Huffman树的应用图的定义图的存储结构邻接表的特点生成树最小生成树拓扑排序有关概念拓扑排序特点关键路径有关概念事件的最早发生时间事件的最迟发生时间活动的最早开始时间活
- 图论算法的大家庭——c++中的图论算法
imlarry0616
深度优先算法图论
图论算法是处理图结构问题的核心工具,广泛应用于路径规划、社交网络分析、计算机网络等领域。以下从基础概念、经典算法及其代码实现展开详细介绍,涵盖DFS、BFS、最短路径、最小生成树等核心内容,并附C++代码示例及注释。一、图的基础概念图的定义:由顶点(Vertex)集合V和边(Edge)集合E组成,记作G=(V,E)。分类:无向图:边无方向(如社交网络中的朋友关系)。有向图:边有方向(如网页链接关系
- P1967 [NOIP 2013 提高组] 货车运输(树链剖分+线段树)
gw_water
cocoac++算法贪心算法数据结构
文章目录题目要求一、解题思路二、解题过程1.数据结构2.求最小生成树(Kruskal算法)2.答案计算(TCD+SegementTree)AC代码题目要求A国有n座城市,编号从1到n,城市之间有m条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有q辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。一、解题思路本题求一条路径,使得其在不超过限制重量的前提下,载
- 贪心算法(集合覆盖问题)
RonzL
算法与数据结构贪心算法集合覆盖问题java算法
一、贪心算法概述贪心算法的核心思想可以总结为:贪心算法总是做出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所做出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解,如单源最短路经问题,最小生成树问题等。虽然在一些情况下,即使贪心算法不能得到整体最优解,但其最终结果却是最优解
- 数据结构进阶 第七章 图(Graph)
an_胺
数据结构进阶数据结构深度优先图论
第7章图(Graph)7.1图的基本术语图的定义图是由顶点集合V和边集合E组成的数据结构,记为G=(V,E),其中:顶点集V:有限非空集合边集E:顶点对的集合基本概念无向图:边没有方向,用无序对(vi,vj)表示有向图:边有方向,用有序对表示完全图:任意两个顶点之间都有边稀疏图:边数相对较少的图,|E|vexnum,&G->arcnum);for(i=0;ivexnum;i++){scanf(&G
- 代码随想录|图论理论基础
1.图的种类(有向图和无向图)有向图:图中边有方向无向图:图中边无方向加权有向图:图中边是有权值和方向的,无向图也是如此2.度(无向图中有几条边连接该节点,该节点就有几度)出度:从该节点出发的边的个数入度:指向该节点边的个数3.连通性(在图中表示节点的联通情况,我们称之为连通性)连通图:在无向图中,任何两个节点都是可以到达的(可以借助其他节点)非连通图:有节点不能到达其他节点强连通图:在有向图中,
- 数据结构与算法领域贪心算法的深度剖析
AI天才研究院
ChatGPT实战计算AgenticAI实战贪心算法算法ai
数据结构与算法领域贪心算法的深度剖析关键词:贪心算法、最优子结构、贪心选择性质、动态规划、贪心策略、时间复杂度、算法设计摘要:本文从贪心算法的核心概念出发,系统剖析其数学原理、算法设计模式及工程实践方法。通过对比贪心算法与动态规划的差异,揭示贪心选择性质和最优子结构的本质联系。结合活动选择、最小生成树、最短路径等经典案例,详细阐述贪心策略的构建过程与正确性证明方法。最后通过工业级项目实战,展示贪心
- 最小生成树算法的解题思路与 C++ 算法应用
Aobing_peterJr
OI算法分析算法c++
一、最小生成树算法针对问题类型及概述先来简要陈述一下树的概念:一个由NNN个点和N−1N-1N−1条边组成的无向连通图。由此,我们可以得知生成树算法的概念:在一个NNN个点的图中找出一个由N−1N-1N−1条边组成的树。具体来说,我们是在一个图G(N,M)G(N,M)G(N,M)中找到一个生成树G(N,N−1)G(N,N-1)G(N,N−1),在生成树G(N,N−1)G(N,N-1)G(N,N−1
- 贪心算法详解:理解贪心算法看这一篇就够了
爪哇学长
Java编程基础及进阶贪心算法算法javapython
文章目录1.贪心算法的基础理论1.1什么是贪心选择性质1.2证明贪心选择性质2.设计步骤2.1定义问题和目标2.2确定数据结构2.3排序和选择策略2.4迭代与决策2.5终止条件3.实例详解3.1活动选择问题3.2分数背包问题3.3最小生成树(Kruskal算法)1.贪心算法的基础理论1.1什么是贪心选择性质贪心选择性质是指一个全局最优解可以通过一系列局部最优的选择构建出来。这意味着在做出每个选择时
- 计算机数据结构图知识点,2011考研计算机数据结构复习重点解析:图的应用
夏欢Vivian
计算机数据结构图知识点
图是数据结构科目中难度最大的重点章节,在这两年的考试中也作为重点来考查。图这部分内容概念多、算法多、难度大。这就需要大家深刻理解每个知识点,多做练习,抓住规律,才能很好地解答这部分试题。图这部分要求大家掌握图的定义、特点、存储结构、遍历、图的基本应用等内容。图这部分的重点和难点是图的基本应用,这在09年和10年的考试中有所体现。图的基本应用包括:最小生成树、最短路径、拓扑排序、关键路径等。09年考
- 贪心算法经典问题
弥彦_
c++算法c++
目录贪心思想一、Dijkstra最短路问题问题描述:贪心策略:二、Prim和Kruskal最小生成树问题Prim算法:Kruskal算法:三、Huffman树问题问题描述:贪心策略:四、背包问题问题描述:贪心策略:五、硬币找零问题问题描述:贪心策略:六、区间合并问题问题描述:贪心策略:七、选择不相交区间问题问题描述:贪心策略:八、区间选点问题问题描述贪心策略九、区间覆盖问题问题描述:贪心策略:十、
- 大厂机试题解法笔记大纲+按知识点分类+算法编码训练
二分法部门人力分配数据最节约的备份方法项目排期食堂供餐矩阵匹配书籍叠放爱吃蟠桃的孙悟空深度优先搜索(DFS)欢乐的周末寻找最大价值矿堆可组成网络的服务器连续出牌数量图像物体的边界核算检测启动多任务排序无向图染色广度优先搜索(BFS)欢乐的周末快递员的烦恼亲子学习跳马启动多任务排序电脑病毒感染图5G网络建设(最小生成树)城市聚集度问题(树形DP、并查集)电脑病毒感染(Dijkstra算法)启动多任务
- 【题解-洛谷】P1339 [USACO09OCT] Heat Wave G
X CODE
算法练习题解算法图论单源最短路径堆优化版的dijkstra
题目:P1339[USACO09OCT]HeatWaveG题目描述有一个nnn个点mmm条边的无向图,请求出从sss到ttt的最短路长度。输入格式第一行四个正整数n,m,s,tn,m,s,tn,m,s,t。接下来mmm行,每行三个正整数u,v,wu,v,wu,v,w,表示一条连接u,vu,vu,v,长为www的边。输出格式输出一行一个整数,表示答案。输入输出样例#1输入#1711542421437
- 数据结构 图(Graph)
Johnny-He
数据结构c语言图论
数据结构图(Graph)1.图介绍在数据结构中,图Graph是一种非常重要的数据结构,用于表示不同的对象(主要是节点与边)之间的关系。图由节点V(顶点)(Vertex)和边E(Edge)组成,即有Graph={∑V+∑E},节点表示图中的元素,而边表示节点之间的关系。图可以用于建模各种实际问题,如社交网络中的用户关系、计算机网络中的路由、地图中的道路网络等。图可以分为有向图DAG和无向图G两种类型
- Prim算法实现 -- 结合优先级队列
NLP_wendi
数据结构与算法Prim算法
什么是Prim算法?classPrim2:"""P算法最小生成树算法MSTMinimalSpanningTree保证整个拓扑图的所有路径之和最小"""def__init__(self,graph):n=len(graph)#存放横切边self.min_heap=[]#类似于visited数组,记录节点是否在mst中self.inMst=[False]*nself.weightSum=0#三元组se
- atc abc409E
弥彦_
atcoder算法c++
原题链接:E-PairAnnihilation题目背景:n个点n-1条边的有权无向图,每个点都有一个值,两个连通的点的值可以互相抵消,既将u的-1传给v时可以抵消掉v的1并花费边权值;求最小花费。考察算法:图,贪心,dfs。思路:贪心策略:递归将子节点的值传给父节点即可。注意:开ll。数据范围:2#defineiosccios::sync_with_stdio(false),cin.tie(0),
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s