- Redis + Caffeine 实现高效的两级缓存架构
周童學
Java缓存redis架构
Redis+Caffeine实现高效的两级缓存架构引言在现代高并发系统中,缓存是提升系统性能的关键组件之一。传统的单一缓存方案往往难以同时满足高性能和高可用性的需求。本文将介绍如何结合Redis和Caffeine构建一个高效的两级缓存系统,并通过三个版本的演进展示如何逐步优化代码结构。项目源代码:github地址、gitee地址两级缓存架构概述两级缓存通常由本地缓存(如Caffeine)和分布式缓
- 零数学基础理解AI核心概念:梯度下降可视化实战
九章云极AladdinEdu
人工智能gpu算力深度学习pytorchpython语言模型opencv
点击“AladdinEdu,同学们用得起的【H卡】算力平台”,H卡级别算力,按量计费,灵活弹性,顶级配置,学生专属优惠。用Python动画演示损失函数优化过程,数学公式具象化读者收获:直观理解模型训练本质,破除"数学恐惧症"当盲人登山者摸索下山路径时,他本能地运用了梯度下降算法。本文将用动态可视化技术,让你像感受重力一样理解AI训练的核心原理——无需任何数学公式推导。一、梯度下降:AI世界的"万有
- 在 Windows 系统 下直接使用了 Linux/macOS 的环境变量设置语法 PLATFORM=android
一、报错原因由于开发这个项目的同事,使用电脑的操作系统是macOS。所以才会出现这个错误,因为我是在Windows系统下直接使用了Linux/macOS的环境变量设置语法PLATFORM=android(项目根目录下的package.json文件,找到scripts部分,检查test:android的定义),而Windows不支持这种语法。二、解决方案cross-env是一个解决跨平台环境变量设置
- 利用Gpu训练
兮℡檬,
深度学习人工智能
方法一:分别对网络模型,数据(输入,标注),损失函数调用.cuda()网络模型:iftorch.cuda.is_available():net=net.cuda()数据(训练和测试):iftorch.cuda.is_available():imgs=imgs.cuda()targets=targets.cuda()损失函数:iftorch.cuda.is_available():loss_fn=l
- 因果推断推荐系统工具箱 - PRS(二)
processor4d
文章名称【WSDM-2021】【UniversityofVirginia-Google】Non-ClicksMeanIrrelevant?PropensityRatioScoringAsaCorrection核心要点上一节讲解了在unbiasL2R的场景中,基于pairwise比较的损失函数的IPS的方法存在与真实评估指标偏离的问题,这一节讲解如何环节这一问题,并学习模型参数。方法细节问题引入作者
- 【树模型与集成学习】(task6)梯度提升树GBDT+LR
山顶夕景
推荐算法#集成学习与KaggleGBDT推荐算法机器学习
学习总结(1)不同问题的提升树学习算法,主要区别在于使用的损失函数不同,如用平方误差损失函数的回归问题、用指数损失函数的分类问题、用一般损失函数的一般决策问题等。(2)不管是二分类问题的提升树,还是回归问题的提升树,这里的损失函数都很方便:前者是用指数损失函数,所以可以当做是Adaboost的个例,Aadaboost的流程;而后者是当使用平方误差损失时,可以直接拟合残差。而使用不同的损失函数,对应
- 【YOLO系列】YOLOv1详解:模型结构、损失函数、训练方法及代码实现
一碗白开水一
yolo系列助你拿捏AI算法YOLO人工智能目标检测计算机视觉
YOLOv1(YouOnlyLookOnce):实时目标检测的革命性突破✨motivation在目标检测领域,传统方法如R-CNN系列存在计算冗余、推理速度慢的问题。2016年提出的YOLO(YouOnlyLookOnce)首次实现端到端单阶段检测,将检测速度提升至45FPS(FasterR-CNN仅7FPS),彻底改变了实时目标检测的格局。其核心思想是将检测视为回归问题,实现"看一眼即知全貌"的
- YOLOV8模型及损失函数
山居秋暝LS
计算机视觉PythonYOLO
YOLOV8代码分析1.YOLOV8相对于YOLOV5的改进2模型2.1模型主要模块2.1.1模型主要模块:2.1.2CBS、SPPF、Bottleneck、C2f、model3损失ultralytics/models/yolo/detect/train.py3.2.1生成anchor_points3.3.1把targets[9,6]变为[bs,max_gt,1+4]3.4获取预测框Pboxes3
- 【YOLO系列】YOLOv4详解:模型结构、损失函数、训练方法及代码实现
一碗白开水一
yolo系列助你拿捏AI算法YOLO目标跟踪人工智能目标检测计算机视觉论文阅读
YOLOv4详解:模型结构、损失函数、训练方法及代码实现motivationYOLO系列作者JosephRedmon与AlexeyBochkovskiy致力于解决目标检测领域的核心矛盾:精度与速度的平衡。YOLOv4的诞生源于两大需求:工业落地:在移动端/边缘设备实现实时检测(>30FPS)学术突破:无需昂贵算力(如1080Ti即可训练),在MSCOCO数据集达到SOTAmethods1.数据加载
- AI编译器-算法篇(1)遗传算法GA
hush_coder
AI编译器-算法篇c++人工智能开发语言算法
AI编译器-算法篇(1)遗传算法GA目录AI编译器-算法篇(1)遗传算法GA目录摘要前言目前问题简述什么是GA核心流程1.初始化种群2.适应度评估3.选择(Selection)4.交叉(Crossover)5.变异(Mutation)6.终止条件7.主流程离散优化问题定义在混合精度优化中未来的方向GA的变种多目标遗传算法NSGA-II与其他结合模拟退火SA禁忌搜索TS社区分层搜索HiFRTuner
- 【Elasticsearch】跨集群检索(Cross-Cluster Search)
《Elasticsearch集群》系列,共包含以下文章:1️⃣冷热集群架构2️⃣合适的锅炒合适的菜:性能与成本平衡原理公式解析3️⃣ILM(IndexLifecycleManagement)策略详解4️⃣Elasticsearch跨机房部署5️⃣快照与恢复功能详解6️⃣Elasticsearch快照恢复API参数详解7️⃣安全地删除快照仓库、快照8️⃣快照生命周期管理SLM(理论篇)9️⃣快照生命
- Language Models are Few-Shot Learners: 开箱即用的GPT-3(三)
新兴AI民工
深度网络/大模型经典论文详解语言模型gpt-3人工智能
Result前面的两个部分介绍了背景,模型的情况和一些测试的方法,这一章就是展示各种尺寸的模型,包括175B的GPT-3在各种任务下的测试情况了。power-law第三章一上来,就用了14不同尺寸的模型来验证这个cross-entropy的线性提升与模型尺寸的指数关系(从最小的100000个参数,一只上升到175B的GPT-3,从10的5次方一直测试到10的11次方),从更大的尺度上来验证这个结论
- 交叉熵损失函数
onlyzzr
深度学习pytorch深度学习机器学习
importtorchimporttorch.nn.functionalasFimporttorch.nnasnnimportmathdefcross_entropyloss(y_pred,y_true):#y_pred'sshapeis[N,C]y_pred=torch.log_softmax(y_pred,dim=-1)loss=-torch.sum(y_true*y_pred,dim=-1)
- 机器学习算法(六)---逻辑回归
向云端UP
机器学习模型机器学习算法逻辑回归
目录一、逻辑回归1.1模型介绍1.2工作原理1.2.1对数几率模型1.2.2逻辑回归与Sigmoid函数1.3.3熵、相对熵与交叉熵1.3损失函数和优化算法1.3.1损失函数的理论基础1.3.2优化算法1.3.2.1梯度下降算法局限1.3.2.2随机梯度下降与小批量梯度下降1.4算法流程1.5逻辑回归优缺点1.6案例1.7classification_report()参数二、逻辑回归与线性回归的区
- 博客摘录「 yolo 11从原理、创新点、训练到部署(yolov11代码+教程)」2025年4月28日
G.547
笔记
2.1新的Backbone设计YOLOv11引入了一个改进的Backbone网络架构,采用了CSPNet(CrossStagePartialNetwork)的升级版。CSPNet的引入使得YOLOv11在计算量相对较低的情况下能够更有效地提取深度特征,从而提高模型的表达能力。具体来说,CSPNet通过将特征图进行部分跨层连接,减少了冗余梯度信息,提高了模型的学习效率和泛化能力。2.2SPPF(Sp
- 实验七 SVM支持向量机
萍萍无奇a
支持向量机机器学习人工智能
目录一、SVM定义二、SVM基本概念及其优缺点1、间隔2、SVM核心3、支持向量4、支持向量机的基本思想5、优缺点三、损失函数四、代码实现1、算法实现基本流程2、代码解析3、整体代码五、结果截图及解释1、结果截图2、结果解释六、实验总结一、SVM定义支持向量机(SupportVectorMachine,SVM)是一种经典的监督学习算法,用于解决二分类和多分类问题。其核心思想是通过在特征空间中找到一
- Pytorch 自定义损失函数
DeniuHe
Pytorch
自定义HingeLossclassMyHingeLoss(torch.nn.Module):#不要忘记继承Moduledef__init__(self):super(MyHingeLoss,self).__init__()defforward(self,output,target):"""output和target都是1-D张量,换句话说,每个样例的返回是一个标量."""hinge_loss=1-
- 熵与交叉熵:从信息论到机器学习的「不确定性」密码
熵与交叉熵:从信息论到机器学习的「不确定性」密码在信息时代的浪潮中,我们每天都在与「信息」打交道——一条新闻、一张图片、一段语音,甚至是AI模型的一次预测结果,本质上都是信息的传递。但如何量化信息的「多少」?如何衡量两个信息分布的「差异」?这两个问题,正是信息论中「熵」与「交叉熵」的核心使命。本文将从日常生活出发,逐步拆解这两个概念的数学本质,并揭示它们如何成为机器学习的底层基石。一、熵:不确定性
- 【Python】moviepy2
宅男很神经
python开发语言
3.5.4.2创建无缝循环视频(vfx.make_loopable):永不停止的视觉流vfx.make_loopable(clip,crossfade=0.5,t_duration=None)是一个非常巧妙的函数,用于将一个视频剪辑转换成可以无缝循环播放的形式。它通过在视频的结尾和开头之间创建一个平滑的过渡来实现这一点,从而消除循环播放时的突兀感。这在制作背景动画、GIF动图或需要无限重复的视频素
- 深度学习 - 梯度下降优化方法
梯度下降的基本概念梯度下降(GradientDescent)是一种用于优化机器学习模型参数的算法,其目的是最小化损失函数,从而提高模型的预测精度。梯度下降的核心思想是通过迭代地调整参数,沿着损失函数下降的方向前进,最终找到最优解。生活中的背景例子:寻找山谷的最低点想象你站在一个山谷中,眼睛被蒙住,只能用脚感受地面的坡度来找到山谷的最低点(即损失函数的最小值)。你每一步都想朝着坡度下降最快的方向走,
- 深度学习-梯度下降法
若天明
深度学习深度学习人工智能
梯度下降法优化器核心目标:找到函数的最小值点(或极小值点)。在机器学习中,这个函数通常是损失函数,衡量模型预测值与真实值的差距。最小化损失函数意味着让模型预测更准确。核心思想:想象你站在一个山坡上(函数曲面),目标是尽快下到山谷最低点(最小值点)。你不知道最低点的具体位置,但你能感受到脚下山坡的最陡峭下降方向(梯度方向)。沿着这个方向走一步(更新参数),然后重新感受方向,再走一步...如此反复,直
- XSS基础
Z_zz_Z___
xss前端php
一、xss的基本介绍在现代的网站中包含有许多大量动态的内容,而恶意攻击者会在Web页面里插入恶意Script代码,当用户浏览该页之时,嵌入其中Web里面的Script代码会被执行,从而达到恶意攻击用户的目的。动态的站点就受到“跨站脚本攻击”(CrossSiteScripting简称xss)。跨站脚本攻击是一种针对网站应用程序的安全漏洞攻击技术,是代码注入的一种,恶意用户利用xss代码攻击成功后,可
- Transformer Masked loss原理精讲及其PyTorch逐行实现
MaskedLoss的核心原理是:在计算损失函数时,只考虑真实有意义的词元(token),而忽略掉为了数据对齐而填充的无意义的填充词元(paddingtoken)。这是重要的技术,可以确保模型专注于学习有意义的任务,并得到一个正确的性能评估。1.原理精讲为什么需要MaskedLoss?在训练神经网络时,我们通常会用一个批次(batch)的数据进行训练,而不是一次只用一个样本。对于自然语言处理任务,
- 【美团3面】大模型面试题详解:大模型使用几十条数据微调后为啥性能差的很多?
AI大模型-王哥
产品经理大模型学习AI大模型人工智能大模型大模型教程程序员
一个很有意思的回答:大模型的LossLandscape是由多个“Basin”(盆地)组成的,而不是一个平滑的曲面。如果微调(Fine-Tuning)的优化方向偏离了BasicCapacityBasin,就可能容易训崩掉,虽然训崩的概率不大。大模型(如LLM)在预训练阶段通过海量数据学习,优化出一个“基本能力盆地”(BasicCapacityBasin),这个Basin代表模型具备通用语言理解、生成
- 【网络安全】XSS攻击
第十六年盛夏.
网安web安全xss前端
如果文章不足还请各位师傅批评指正!XSS攻击是什么?XSS全称是“CrossSiteScripting”,也就是跨站脚本攻击。想象一下,你正在吃一碗美味的面条,突然发现里面有一只小强!恶心不?XSS攻击就是这么个感觉——它往正常的网页里塞进恶意代码,等你打开网页时,这段代码就会悄悄执行,可能偷走你的信息,比如账号、密码之类的。一、XSS攻击的原理:藏在网页里的“坏心眼纸条”想象一下,你和朋友们在一
- 基础NLP | 01 机器学习 深度学习基础介绍
是娜个二叉树!
NLP自然语言处理机器学习深度学习
文章目录机器学习简介有监督学习无监督学习一般流程常用概念深度学习简介隐含层/中间层例子and流程如果想要猜测的又快又准,调整的方向有哪些?随机初始化损失函数导数与梯度梯度下降优化器MiniBatchepoch流程深度学习的基本思想机器学习简介有监督学习核心目标:建立一个模型(函数),来描述输入(X)和输出(Y)之间的映射关系价值:对于新的输入,通过模型给出预测的输出要点:有一定数量的训练样本输入和
- 中国计算机学会(CCF)推荐学术会议-A(人工智能):AAAI 2026
爱思德学术
人工智能机器学习自然语言处理数据挖掘
AAAI2026ThepurposeoftheAAAIconferenceseriesistopromoteresearchinArtificialIntelligence(AI)andfosterscientificexchangebetweenresearchers,practitioners,scientists,students,andengineersacrosstheentiretyo
- OpenCV结合深度学习进行图像分类
香蕉可乐荷包蛋
#OpenCVopencv深度学习分类
文章目录1.支持的深度学习框架和模型格式2.模型加载方式加载预训练模型示例:3.图像预处理流程4.前向传播与推理5.结果解析与后处理6.性能优化技巧启用GPU加速:批量处理:代码示例在资源中有上传1.支持的深度学习框架和模型格式OpenCV的DNN模块支持多种主流深度学习框架训练的模型:TensorFlow:支持冻结图(.pb)和SavedModel格式Caffe:支持.prototxt和.caf
- 《整合Spring Cache:本地缓存、Redis与Caffeine对比实践》
整合SpringCache:本地缓存、Redis与Caffeine对比实践前言在高并发、高性能的系统设计中,缓存始终扮演着不可替代的角色。SpringCache作为Spring框架原生提供的缓存抽象层,极大简化了缓存接入的复杂度。然而,如何选择合适的缓存组件?如何支持多级缓存?如何处理缓存一致性和失效问题?这些才是“实战”真正的挑战。文章目录整合SpringCache:本地缓存、Redis与Caf
- Python进阶第三方库之Pandas
paid槮
pythonpandas开发语言
了解Numpy与Pandas的不同说明Pandas的Series与Dataframe两种结构的区别了解Pandas的MultiIndex与panel结构应用Pandas实现基本数据操作应用Pandas实现数据的合并应用crosstab和pivot_table实现交叉表与透视表应用groupby和聚合函数实现数据的分组与聚合了解Pandas的plot画图功能应用Pandas实现数据的读取和存储Pan
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST