- SIGMOD论文解读|在自下而上优化中添加布隆过滤器
Gauss松鼠会
技术交流数据库gaussdbdatabase
6月22日至27日,2025ACMSIGMOD/PODS国际学术会议在德国柏林举行。25日,华为多伦多分布式调度和数据引擎实验室主任工程师TimothyZeyl受邀出席,就入选的《IncludingBloomFiltersinBottom-upOptimization》论文进行了解读该论文创新性地首次提出了在自下而上的优化器的基于成本的优化过程中添加布隆过滤器(BloomFilter)的技术。该技
- orb-slam run rgbd data
hetongqiyue
计算机视觉slam
TUM数据集准备+RGB-D运行从这个网址下载tum数据集[http://vision.in.tum.de/data/datasets/rgbd-dataset/download]并且解压缩。使用python脚本关联RGB图像和深度图像[associate.py],[http://vision.in.tum.de/data/datasets/rgbd-dataset/tools].我们已经提供了一
- D-FINE使用pth权重批量推理可视化图片
悠悠海风
代码调试深度学习人工智能python目标检测计算机视觉
关于D-FINE相关的内容可参考下面这篇博客:论文解读:ICLR2025|D-FINE_d-fine:redefineregressiontaskindetrsasfine--CSDN博客文章浏览阅读949次,点赞18次,收藏28次。D-FINE是一款功能强大的实时物体检测器,它将DETRs中的边界框回归任务重新定义为细粒度分布细化(FDR),并引入了全局最优定位自蒸馏(GO-LSD),在不引入额
- 《深入浅出多模态》(四):多模态经典模型CLIP
GoAI
深入浅出多模态多模态大模型LLM人工智能
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介
- 深入浅出多模态》(十一)之多模态经典模型:Flamingo系列
GoAI
机器学习多模态大模型人工智能LLM机器学习
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:本作
- 大语言模型全流程开发技术详解:从架构、训练到对齐与量化
艾墨舟启航
大模型实战架构人工智能大语言模型
github:https://github.com/mlabonne/llm-course大语言模型全流程开发技术详解:从架构、训练到对齐与量化大模型实战指南:多模型生态实战与论文解读一、LLM架构(TheLLMarchitecture)不需要对Transformer架构有深入的了解,但了解现代LLM的主要步骤很重要:通过分词化将文本转换为数字,通过包括注意力机制在内的层处理这些分词,最后通过各种
- VLM 系列——Qwen2 VL——论文解读
TigerZ*
AIGC算法AIGC计算机视觉人工智能图像处理
一、概述1、是什么是一系列多模态大型语言模型(MLLM),其中包括2B、7B、72B三个版本,整体采用视觉编码器(标准VIT输出后面接patchmerger)+LLM形式。比较创新的是统一视觉处理方式(3DCNN统一视频、图片)+图像缩放方式(自适应缩放)+3DLLM位置编码。能够处理包括文本、图像在内的多种数据类型,具备图片描述、单图文问答、多图问对话、视频理解对话、json格式、多语言、age
- SAM2论文解读-既实现了视频的分割一切,又比图像的分割一切SAM更快更好
↣life♚
计算机视觉大模型通用模型人工智能计算机视觉深度学习通用分割视频分割算法
code:https://github.com/facebookresearch/sam2/tree/maindemo:https://sam2.metademolab.com/paper:https://ai.meta.com/research/publications/sam-2-segment-anything-in-images-and-videos/这是SAM这是SAM2Facebook
- 【AI论文精读3】RAG论文综述1-P3-检索器
AI完全体
AI论文解读人工智能机器学习深度学习自然语言处理RAG论文阅读论文笔记
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】P1,P2,P4,P5,P6三、检索器在RAG中,有效地从数据源中检索相关文档至关重要。涉及的关键问题包括检索源、检索粒度、检索的预处理以及选择相应的嵌入模型。3.1.检索源RAG依赖外部知识来增强LLM,而检索源(RetrievalSource)的类型(数据结构)和检索单元的粒度都会影响最终的生成结果。3.1.1.数据结构1.非结构化数
- 【论文解读】s3: 仅 2.4K 数据即可 RL 训练Search Agent
1stauthro:PatrickJiangpaper:[2505.14146]s3:YouDon’tNeedThatMuchDatatoTrainaSearchAgentviaRLcode:pat-jj/s3:s3-EfficientYetEffectiveSearchAgentTrainingviaRLforRAG5.总结(结果先行)s3框架以其“解耦搜索与生成、仅训练搜索代理、采用GBR奖励
- 【论文解读】OmegaPRM:MCTS驱动的自动化过程监督,赋能LLM数学推理新高度
vlln
Search&Learning人工智能深度学习搜索引擎神经网络transformer
1stauthorLiangchenLuoYinxiaoLiu-GoogleScholarpaper:[2406.06592]ImproveMathematicalReasoninginLanguageModelsbyAutomatedProcessSupervisioncode:sanowl/OmegaPRM:thisisanimplementationforthepaperImprov
- 活动邀请 | SECon 全球软件工程技术大会深圳站将于6月20—21日举办!
github
SECon全球软件工程技术大会将于6月20日——6月21日在深圳举办!大会精心设置了16个专场,内容涵盖AI前沿论文解读、大数据平台与架构实践、大前端架构实践、AI知识工程体系:从零散知识到流水线、DeepSeek技术前瞻与应用实践、AI时代数据架构的演进、从Agent到Multi-Agent的智能跃迁、高可用架构、垂直深耕:小模型、大智慧、数据分析场景中AI应用、AI+研发的智能化升级、多模态生
- CON:Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models 论文解读
亦万
大模型RAGCOTCON
目前RALM主要存在两个问题:搜索结果误导性:搜索结果依赖其召回和排序,所以不一定和问题相关,不相关的结果融合到大模型中会给大模型带来误导导致错误的答案(甚至有的时候大模型依靠内部记忆能够正确回答);回复幻觉问题:针对无法回答的问题(不管是搜索结果还是内部记忆),大模型有时也会一本正经的胡说八道。本篇paperCON(Chain-of-Note)主要就是解决上面两个问题:如下图所示,有三种情况搜索
- 【2025智源大会论文解读】智能体-林衍凯
weixin_37763484
大模型人工智能算法
另一位人大老师的近期工作汇总,涉及数据合成(生成训练数据,指导agent模型)、奖励模型训练(用于监督agent进行规划)、主动行动(指导agent主动为人类提供服务)、工具选择(支持1600+工作调用)、多模态训练(操作手机)等。0新框架具体实现还没有找到0.1MiniCPM4-Survey:MiniCPM4-Survey是由THUNLP、中国人民大学和ModelBest联合开发的开源大语言模型
- [论文阅读] 人工智能 | 搜索增强LLMs的用户偏好与性能分析
张较瘦_
前沿技术人工智能论文阅读
【论文解读】SearchArena:搜索增强LLMs的用户偏好与性能分析论文信息作者:MihranMiroyan,Tsung-HanWu,LoganKing等标题:SearchArena:AnalyzingSearch-AugmentedLLMs来源:arXivpreprintarXiv:2506.05334v1,2025一、研究背景:当LLMs需要“上网查资料”时,我们如何评估它?想象你在问AI
- 【论文解读实战篇】Cheetah mini MPC+WBC控制Whole-Body Impulse Control and Model Predictive Control
RoboticsTechLab
机器人实战项目机器人算法
文章目录一、简介二、控制架构1、控制流程2、摆动腿落点规划器3、状态估计器(用于估计躯干的位置、速度、姿态)4、步态调度器和步态规划器三、模型预测控制MPC1.MPC使用的集中质量动力学模型(用于预测泛作用力f)2.模型简化假设四、WBC全身脉冲控制1.WBC使用的多体动力学模型(计算每个关节的力矩)2.优先任务执行(为了计算关节位置、速度和加速度)3.二次规划(为了计算关节转矩指令)4.计算最终
- 【论文解读】CVPR 2024 DSL-FIQA :全新人脸面部图像质量评估算法(附论文地址)
牧锦程
论文解读算法
论文地址:https://openaccess.thecvf.com/content/CVPR2024/papers/Chen_DSL-FIQA_Assessing_Facial_Image_Quality_via_Dual-Set_Degradation_Learning_and_CVPR_2024_paper.pdf这篇论文标题为"DSL-FIQA:AssessingFacialImageQu
- 综述论文解读:Editing Large Language Models: Problems, Methods, and Opportunities
cnblogs.com/qizhou/
语言模型人工智能自然语言处理
论文为大语言模型知识编辑综述,发表于自然语言处理顶会ACL(原文链接)。由于目前存在广泛的模型编辑技术,但一个统一全面的分析评估方法,所以本文: 1、对LLM的编辑方法进行了详尽、公平的实证分析,探讨了它们各自的优势和劣势。 2、构建了一个新的数据集,旨在揭示当前模型编辑方法的缺点,特别是泛化和效率方面。 3、概述了模型编辑领域未来潜在的研究机会。 阅读本文请同时参考原始论文图表。问题
- 论文解读:Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adapters
cnblogs.com/qizhou/
论文发表于人工智能顶会NeurIPS(原文链接)。当前的模型编辑器会因多次编辑损害模型性能,提出用于连续编辑的通用检索适配器(GeneralRetrievalAdaptersforContinualEditing,GRACE):使用一个类似字典的结构(适配器)为需要修改的潜在表示构建新的映射,通过更新适配器来实现持续的模型行为编辑。方法 GRACE是一种不修改模型权重编辑预训练模型行为的方法
- 论文解读:Locating and Editing Factual Associations in GPT(ROME)
论文发表于人工智能顶会NeurIPS(原文链接),研究了GPT(GenerativePre-trainedTransformer)中事实关联的存储和回忆,发现这些关联与局部化、可直接编辑的计算相对应。因此: 1、开发了一种因果干预方法,用于识别对模型的事实预测起决定性作用的神经元。 2、为了验证这些神经元是否对应于事实关联的回忆,使用秩一模型编辑(Rank-OneModelEditing,
- [论文阅读] 人工智能+软件工程 | MemFL:给大模型装上“项目记忆”,让软件故障定位又快又准
张较瘦_
前沿技术论文阅读人工智能软件工程
【论文解读】MemFL:给大模型装上“项目记忆”,让软件故障定位又快又准论文信息arXiv:2506.03585ImprovingLLM-BasedFaultLocalizationwithExternalMemoryandProjectContextInseokYeo,DuksanRyu,JongmoonBaikSubjects:SoftwareEngineering(cs.SE)一、研究背景:
- [论文阅读] 人工智能 | 当AI遇见绿色软件工程:可持续AI实践的研究新方向
张较瘦_
前沿技术人工智能
【论文解读】当AI遇见绿色软件工程:可持续AI实践的研究新方向论文信息作者:MajaH.Kirkeby,EnriqueBarbaRoque,JustusBogner等标题:GreeningAI-enabledSystemswithSoftwareEngineering:AResearchAgendaforEnvironmentallySustainableAIPractices年份:2025来源:
- 【论文解读】MemGPT: 迈向为操作系统的LLM
vlln
transformer人工智能深度学习自然语言处理
1stauthor:CharlesPackerpaperMemGPT[2310.08560]MemGPT:TowardsLLMsasOperatingSystemscode:letta-ai/letta:Letta(formerlyMemGPT)isthestatefulagentsframeworkwithmemory,reasoning,andcontextmanagement.这个项目现在已
- 科研学习 论文解读——面向电商内容安全风险管控的协同过滤推荐算法研究(1)
2401_84296945
学习安全推荐算法
面向电商内容安全风险管控的协同过滤推荐算法研究-中国知网(cnki.net)")面向电商内容安全风险管控的协同过滤推荐算法研究*摘要:**[目的/意义]随着电商平台商家入驻要求降低以及商品上线审核流程简化,内容安全风险问题成为协同过滤推荐算法伦理审查的核心问题之一。[方法/过程]本文将内容安全风险问题纳入用户协同过滤推荐算法的优化过程,提出一种改进的推荐算法。首先,采用混合研究方法对内容安全风险商
- Transformer目标检测 | DETR论文解读
DeepDriving
自动驾驶与深度学习transformer目标检测深度学习
0.前言DETR是首个将Transformer应用到2D目标检测任务中的算法,由Facebook于2020年在论文《End-to-EndObjectDetectionwithTransformers》中提出。与传统目标检测算法不同的是,DETR将目标检测任务视为一个直接的集合预测问题,采用基于集合的全局损失通过二分匹配实现一对一的预测输出,不需要非极大值抑制(NMS)和手工设计Anchor这些操作
- 【Strip-MLP论文解读】
A man protect you
计算机视觉图像处理
Strip-MLPAbstractIntroductionMethod——OverallArchitecturePatchEmbeddingPatchMergingMixingBlockStripMixingBlockStripMLPLayer:CascadeGroupStripMixingModule(CGSMM):LocalStripMixingModule(LSMM):ChannelMixi
- 《深入浅出多模态》(六): 多模态经典模型BLIP
GoAI
深入浅出多模态多模态大模型BLIPLLM人工智能
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:</
- A Survey on Multimodal Large Language Models论文解读
call me by ur name
largemodel语言模型人工智能自然语言处理
AbstractRecently,MultimodalLargeLanguageModel(MLLM)representedbyGPT-4Vhasbeenanewrisingresearchhotspot,whichusespowerfulLargeLanguageModels(LLMs)asabraintoperformmultimodaltasks.Thesurprisingemergentc
- ICLR2024论文解读|DP-OPT: MAKE LARGE LANGUAGE MODEL YOUR PRIVACY-PRESERVING PROMPT ENGINEER差分隐私离线提示微调
paixiaoxin
论文合集文献阅读知识图谱人工智能自然语言处理语言模型大型语言模型数据隐私
论文标题DP-OPT:MAKELARGELANGUAGEMODELYOURPRIVACY-PRESERVINGPROMPTENGINEER差分隐私离线提示微调:让大型语言模型成为你的隐私保护提示工程师论文链接DP-OPT:MAKELARGELANGUAGEMODELYOURPRIVACY-PRESERVINGPROMPTENGINEER论文下载论文作者JunyuanHong,JiachenT.Wa
- 【AI应用】免费的文本转语音工具:微软 Edge TTS 和 开源版 ChatTTS 对比
AI完全体
AI应用人工智能机器学习TTSEdgeChatTTS文本转语音AI应用
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】【读书与思考】【AI应用】我试用了下EdgeTTS,感觉还不错,不过它不支持克隆声音(比如自己的声音)微软EdgeTTS和开源版ChatTTS都是免费的文本转语音(TTS)工具,但它们在技术架构、语音质量、使用方式等方面有所不同,适用于不同的使用场景。以下是详细对比:1.EdgeTTSvs.ChatTTS总览对比项微软Edge
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在