- Zero-shot learning
无思不晓
zero-shotlearningimage.pngimage.png研究问题建立一个合适的分类模型,特征空间和语义空间的映射数据集AnimalwithAttributes(AwA)官网:AnimalswithAttributesCaltech-UCSD-Birds-200-2011(CUB)官网:Caltech-UCSDBirds-200-2011Sundatabase(SUN)官网:SUNDa
- 论文略读: Fast-DetectGPT: Efficient Zero-Shot Detection of Machine-Generated Text via Conditional Probab
UQI-LIUWJ
论文笔记人工智能
ICLR2024判断生成的文本是人写的还是大模型写的现有的检测器主要分为两类有监督分类器在训练领域表现出色,但在面对来自不同领域或不熟悉模型生成的文本时表现变差零样本分类器免疫领域特定的退化在检测精度上可以与有监督分类器相当但目前的方法计算成本高、计算时间长——>提出了一种新的假设来检测机器生成的文本人类和机器在给定上下文的情况下选择词汇存在明显的差异人类的选择比较多样,而机器更倾向于选择具有更高
- Prompt 精通之路(一)- AI 时代的新语言:到底什么是 Prompt?为什么它如此重要?
程序员阿超的博客
Prompt精通之路:从零基础到AI高效玩家人工智能promptPrompt新手指南提示词入门AI指令ChatGPTdeepseek
AI时代的新语言:到底什么是Prompt?为什么它如此重要?标签:#Prompt新手指南#提示词入门#AI指令#人工智能#ChatGPTPrompt精通之路:系列文章导航第一篇:AI时代的新语言:到底什么是Prompt?为什么它如此重要?第二篇:告别废话!掌握这4个黄金法则,让你的Prompt精准有效第三篇:像专业人士一样思考:Zero-Shot,Few-Shot和思维链(CoT)技巧详解第四篇:
- Prompt 精通之路(四)- AI 赋能:10 个超实用的 Prompt 模板,覆盖写作、编程、学习和办公
程序员阿超的博客
Prompt精通之路:从零基础到AI高效玩家人工智能prompt学习Prompt模板AI工作流ChatGPT应用生产力工具
Prompt精通之路:系列文章导航第一篇:[本文]AI时代的新语言:到底什么是Prompt?为什么它如此重要?第二篇:告别废话!掌握这4个黄金法则,让你的Prompt精准有效第三篇:像专业人士一样思考:Zero-Shot,Few-Shot和思维链(CoT)技巧详解第四篇:AI赋能:10个超实用的Prompt模板,覆盖写作、编程、学习和办公第五篇:构建你的“AI指令系统”:超越简单提问的CRISPE
- Prompt 精通之路(五)- 构建你的“AI 指令系统”:超越简单提问的 CRISPE 与 APE 框架
Prompt精通之路:系列文章导航第一篇:[本文]AI时代的新语言:到底什么是Prompt?为什么它如此重要?第二篇:告别废话!掌握这4个黄金法则,让你的Prompt精准有效第三篇:像专业人士一样思考:Zero-Shot,Few-Shot和思维链(CoT)技巧详解第四篇:AI赋能:10个超实用的Prompt模板,覆盖写作、编程、学习和办公第五篇:构建你的“AI指令系统”:超越简单提问的CRISPE
- Prompt 精通之路(七)- 你的终极 AI 宝典:Prompt 精通之路系列汇总
程序员阿超的博客
Prompt精通之路:从零基础到AI高效玩家人工智能promptPrompt指南AI学习资源速查手册ChatGPT系列总结
你的终极AI宝典:Prompt精通之路系列汇总标签:#Prompt指南#AI学习资源#速查手册#ChatGPT#系列总结Prompt精通之路:系列文章导航第一篇:AI时代的新语言:到底什么是Prompt?为什么它如此重要?第二篇:告别废话!掌握这4个黄金法则,让你的Prompt精准有效第三篇:像专业人士一样思考:Zero-Shot,Few-Shot和思维链(CoT)技巧详解第四篇:AI赋能:10个
- 【T2I】R&B: REGION AND BOUNDARY AWARE ZERO-SHOT GROUNDED TEXT-TO-IMAGE GENERATION
Akttt
T2I计算机视觉人工智能text2img深度学习
CODE:2309https://github.com/StevenShaw1999/RnBABSTRACT近期的文本到图像(T2I)扩散模型在以文本提示作为输入生成高质量图像方面取得了显著进展。然而,这些模型无法传达布局指令所指定的合适空间构图。在这项工作中,我们探索了使用扩散模型进行零样本接地T2I生成,即无需训练辅助模块或微调扩散模型就能生成与输入布局信息相对应的图像。我们提出了一种区域与边
- 大模型Prompt Engineer面试题及参考答案
大模型大数据攻城狮
promptLangChainpython面经工作流扣子difynlp
什么是Few-shotPrompting?与Zero-shot、One-shot有什么区别?Few-shotPrompting是一种提示工程技术,指在向模型提出问题时,同时提供少量的示例作为参考,让模型通过这些示例理解任务要求并生成相应输出。比如询问模型“将以下句子翻译成法语”时,先给出“Hello->Bonjour”“Thankyou->Merci”这样的几个例子,再提供需要翻译的句子,模型就能
- 【GitHub开源项目实战】DINOv2 自监督视觉模型深度解构:多任务零微调性能与多分辨率表征架构解析
观熵
GitHub开源项目实战github开源架构人工智能
DINOv2自监督视觉模型深度解构:多任务零微调性能与多分辨率表征架构解析关键词DINOv2、自监督视觉模型、ViT、多分辨率表示、语义分割、深度估计、Zero-shot、图像表示学习、OpenCLIP替代、MetaAI摘要DINOv2是由MetaAIResearch推出的下一代自监督视觉基础模型,在保持不依赖人工标签的前提下,显著提升了多任务性能,尤其在语义分割、图像分类、深度估计等下游任务中超
- 【图像去噪】论文精读:Zero-Shot Blind-spot Image Denoising via Implicit Neural Sampling
十小大
深度学习人工智能图像处理计算机视觉图像去噪论文阅读论文笔记
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言Abstract1.Introduction1.1.LearningdenoisingNNwithouttruthimages1.2.Discussionsonbli
- 【知识图谱构建系列3】zero-shot的理念介绍
几道之旅
人工智能智能体及数字员工Python杂货铺AI自建MCP学习记录知识图谱人工智能
文章目录zero-shot用在线的大模型直接实现所谓的zero-shot提取试验参考论文:hal.science/hal-04862214/项目地址:https://github.com/ChristopheCruz/LLM4KGC/zero-shot“Zero-shot”的标准中文翻译是零样本或零次学习,指机器学习模型在未经特定任务数据训练的情况下直接处理该任务的能力。对于知识图谱构建而言,ze
- 【仿生机器人】建模—— 图生3D 的几个办法
DFminer
人工智能机器人安全
两件事!第一件:强如Gemini,在多模态和三维空间的理解中,如果不微调去做下游应用,直接Zero-shot的效果是很差的好处是有多视角图生3D,效果还可以,但是也没有很精细,,还得修,粗看还可以,但已经不错了CreatorProgram-Meshy腾讯的混元也一般,感觉没有进行二次元建模的训练,大玩具娃娃还可以,脸部表现一般下面的开源项目脸部表现比混元好一点,是免费的,但是没有多视角。https
- 论文笔记:Large Language Models are Zero-Shot Next LocationPredictors
UQI-LIUWJ
论文笔记论文阅读语言模型人工智能
1intro下一个地点预测(NL)包括基于个体历史访问位置来预测其未来的位置。NL对于应对各种社会挑战至关重要,包括交通管理和优化、疾病传播控制以及灾害响应管理NL问题已经通过使用马尔可夫模型、基于模式的方法以及最近的深度学习(DL)技术(进行了处理。然而,这些方法并不具备地理转移能力因此,一旦这些模型在某个地理区域训练完毕,如果部署到不同的地理区域,它们将面临严重的性能下降尽管已经做出努力改善地
- 论文笔记:LSTPrompt: Large Language Models as Zero-Shot Time Series Forecastersby Long-Short-Term Prompt
UQI-LIUWJ
论文笔记论文阅读语言模型prompt
202402arxiv1intro1.1大模型+时间序列预测一般有两种类型的方法使用海量时间序列数据重新训练一个时间序列领域的大模型论文笔记:TimeGPT-1_timegpt论文-CSDN博客直接利用现有的大模型,设计prompt,将时间序列数据转换成大模型理解的文本,实现时间序列预测代价小+有成熟的可供使用的大模型1.2本文思路之前的方法大多集中在如何将时间序列数据转换成文本上将时间序列的数字
- [论文阅读笔记] Learning Transferable Visual Models From Natural Language Supervision
Heartache Doctor
笔记论文阅读笔记
Abstract将LLM带来的语言zero-shot能力扩展到图像领域,让图像pretrain不再局限于由数据集定义的类别,从而大幅度提升在downstream任务zero-shot的精度。文章提供了从零预训练的CLIP模型,用以训练的大数据集,以及基于对比学习的对齐方案。IntroductionNLP领域下,使用大量数据pretrain>使用高质量标注数据集。→\rightarrow→CV是否也
- AI时代新词-零样本学习(Zero-Shot Learning):AI的未来趋势
明似水
AI人工智能学习
一、什么是零样本学习(Zero-ShotLearning)?零样本学习(Zero-ShotLearning,简称ZSL)是一种机器学习范式,其目标是让模型能够识别和分类那些在训练阶段从未见过的类别。在传统的机器学习和深度学习中,模型的性能通常依赖于大量标注数据的训练,而零样本学习则试图突破这一限制,使模型能够通过已有的知识泛化到未见过的类别上。这种能力在现实世界中尤为重要,因为获取大量标注数据往往
- 提示词工程框架:CoT、ToT、GoT、PoT( 链式提示)
遥望盼望
LLMdeepseek系列论文COT
提示词工程框架:CoT、ToT、GoT、PoT1、提示词工程1.**Zero-Shot(零样本提示)**2.**Few-Shot(少样本提示)**关键区别2、工程框架(链式提示Chain)3、COT思维链(ChainofThought)4、CoT、ToT、GoT、PoT**1.CoT(ChainofThought,思维链)****定义****核心方法****应用场景****优势****2.ToT(
- GPT论文阅读:Language Models are Unsupervised Multitask Learners
真的没有脑袋
GPT系列gpt论文阅读语言模型
GPT系列第二篇论文:LanguageModelsareUnsupervisedMultitaskLearners第一篇阅读链接abstractGPT-2是一个参数量为1.5B的transformer,在zero-shot设定下,在8个测试语言建模数据集中,有7个取得了最先进的结果最主要的贡献是在没有使用微调的情况下,在参数量更大的模型进行预训练,通过prompt和预测层在多个任务中达到SOTA。
- 读论文笔记-Flamingo:少样本视觉语言模型
joseanne_josie
论文阅读语言模型人工智能
读论文笔记-Flamingo:少样本视觉语言模型Plomblems本文拟解决多模态机器学习中,如何将训练好的模型快速适应到少量标注数据的新任务中的问题。Motivations已有的VLM虽然能在zero-shot的场景下适应于新任务,但他们只解决了有限的使用情况(如CLIP只解决了图片分类),由于主要缺乏生成语言的能力其不能应用于开放性任务。其他的一些方法虽然研究了基于视觉的语言生成但在数据量少的
- LangChain Agent核心解析:Zero-Shot-ReAct策略实现与实战指南
lczdyx
pythonlangchain语言模型人工智能
引言在LangChain的Agent框架中,zero-shot-react-description是一种预定义的Agent类型,它结合了Zero-Shot(零样本学习)和ReAct(推理+行动)策略,主要用于根据工具的描述动态选择和执行工具,无需依赖预先提供的示例(即不需要训练数据或上下文示例)。以下是其核心特点和工作原理:1.核心概念解析Zero-Shot(零样本)Agent无需依赖特定任务的示
- 论文阅读:2024 ICLR Fast-detectgpt: Efficient zero-shot detection of machine-generated text via condition
CSPhD-winston-杨帆
论文阅读论文阅读
总目录大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328Fast-detectgpt:Efficientzero-shotdetectionofmachine-generatedtextviaconditionalprobabilitycurvaturehttps://arxiv.org/abs/2310.05130
- RT-2论文深度解读:视觉-语言-动作统一模型的机器人泛化革命
zhaoyqcsdn
VLA机器学习自然语言处理人工智能经验分享笔记
1.核心问题与挑战传统机器人学习存在两大瓶颈:数据效率低下:依赖特定场景的机器人操作数据(如抓取、推压),收集成本高泛化能力局限:模型仅能完成训练中出现过的任务,无法应对长尾场景RT-2的创新目标:利用互联网规模的视觉语言预训练知识,实现机器人技能的零样本(zero-shot)迁移2.方法论突破2.1统一语义空间构建数据范式革新:将机器人动作表示为"语言化"Token序列(如move_to(x=0
- CLIPGaze: Zero-Shot Goal-Directed ScanpathPrediction Using CLIP
小周爱学习€
计算机视觉深度学习人工智能
摘要目标导向的扫描路径预测旨在预测人们在搜索视觉场景中的目标时的视线移动路径。大多数现有的目标导向扫描路径预测方法在面对训练过程中未出现的目标类别时,泛化能力较差。此外,它们通常采用不同的预训练模型分别提取目标提示和图像的特征,导致两者之间存在较大的特征差异,使得后续的特征匹配和融合变得困难。为了解决上述问题,我们提出了一种新颖的零样本目标导向扫描路径预测模型,命名为CLIPGaze。我们利用CL
- 【图像去噪】论文复现:掩码后的自然图像预训练模型用于单噪声图像推理!Zero-shot算法MPI的Pytorch源码复现,跑通源码,图文保姆级教程,框架结构与代码对应,注释详细!
十小大
pytorchpython图像去噪深度学习图像处理计算机视觉底层视觉
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通MPI源码,训练和测试图文展示,详细步骤;MPI框架结构梳理和拆解,结构示意图和代码实现对应,注
- Text2Video-Zero:Text-to-Image Diffusion Models are Zero-Shot Video Generators
Kun Li
图像视频生成大模型人工智能
【AIGC-AI视频生成系列-文章1】Text2Video-Zero-知乎一句话亮点:当文本-视频生成也不需要额外数据训练,只需要基于现有的diffusion-model如StableDiffusion能力调整即可实现,解决生成视频帧间不一致问题,是不是很心动。文章链接:Text-to-ImageDiffusionMode…https://zhuanlan.zhihu.com/p/62677773
- AI提示词终极奥秘:三招破解Zero-Shot/Few-Shot/COT魔法
曦紫沐
提示词人工智能提示词
提示词工程师必备的"超能力":无需数据、少样本也能指挥AI一、为什么你的提示词总是不够聪明?当别人能用一句话生成专业级代码,而你的查询却得到敷衍回答时,问题可能出在提示词工程的三重境界。掌握Zero-Shot/Few-Shot/COT技术,普通人也能让AI发挥出研究员级别的思考能力。二、三分钟掌握三大核心技术1.Zero-Shot:空手道大师的思维(无需任何示例)核心原理:利用模型预训练知识直接推
- CMU 10423 Generative AI:lec10(few-shot、提示工程、上下文学习)
⊙月
AI人工智能学习AIGC
文章目录1概述2摘录2.1zero-shot和few-shot一、Zero-shotLearning(零样本学习)特点:工作原理:优点:缺点:二、Few-shotLearning(少样本学习)特点:工作原理:优点:缺点:三、Zero-shot与Few-shotLearning的对比四、应用案例2.2Prompting(提示)一、Prompting(提示)的定义二、Prompting的原理三、Pro
- langchain系列 - FewShotPromptTemplate 少量示例
码--到成功
大语言模型langchain
导读环境:OpenEuler、Windows11、WSL2、Python3.12.3langchain0.3背景:前期忙碌的开发阶段结束,需要沉淀自己的应用知识,过一遍LangChain时间:20250220说明:技术梳理,针对FewShotPromptTemplate专门来写一篇博客概念说明few-shot最初来源于机器学习的概念,还有one-shot、zero-shot概念,概念如下:机器学习
- 大模型: 提示词工程(prompt engineering)
玉成226
【大模型】prompt
文章目录一、什么是提示词工程二、提示词应用1、提示技巧一:表达清晰2、提示词技巧2:设置角色三、提示方法1、zero-shot提示法2、Few-shot提示法3、思考链COT(chain-of-thought)提示法4、Few-shot-COT提示法一、什么是提示词工程提示词工程主要是用于优化与大模型交互的提示或查询操作,其目的在于能够更加准确的获取提问者想要获取的答案,提示词的好坏会直接影响到大
- 【大模型】从零样本到少样本学习:一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用!
橙子小哥的代码世界
NLP自然语言理解大模型自然语言处理sklearn深度学习神经网络tensorflow
《从零样本到少样本学习:一文读懂Zero-shot、One-shot和Few-shot的核心原理与应用!》正文:在自然语言处理(NLP)领域,Zero-shot、One-shot和Few-shot学习已经成为衡量大语言模型泛化能力的重要指标。尤其是在大规模预训练模型(如GPT系列)的推动下,这些技术得到了广泛应用和关注。本篇文章将带你全面了解这三种学习方法的核心概念、原理和实际应用场景。1.什么是
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {