- 19.0-《超越感觉》-说服他人
SAM52
Becausethoughtfuljudgmentsdeservetobeshared,andthewaytheyarepresentedcanstronglyinfluencethewayothersreacttothem.因为经过深思熟虑的判断值得分享,而这些判断的呈现方式会强烈影响其他人对它们的反应。Bylearningtheprinciplesofpersuasionandapplying
- 2018年中南大学中英翻译
某翁
参考:20180827235856533.jpg【1】机器学习理论表明,机器学习算法能从有限个训练集样本上得到较好的泛化【1】Machinelearningtheoryshowsthatmachinelearningalgorithmcangeneralizewellfromfinitetrainingsetsampleslimited有限的infinite无限的【2】这似乎违背了一些基本的逻辑准
- Python STL概念学习与代码实践
体制教科书
本文还有配套的精品资源,点击获取简介:通过”py_stl_learning”项目,学习者可以使用Python实现和理解C++STL的概念,包括数据结构、算法、容器适配器、模板和泛型容器等。Python中的列表、集合、字典等数据结构与STL中的vector、set、map等类似,而Python的itertools和functools模块提供了STL风格的算法功能。Python通过其面向对象的特性以及
- 每周一段仿写-181028
Zeroun_Ph
Theneedfornewlearningstylesdoesnotmeanignoringthewaysinthepast.TheInternetagebringssomechallengesnotseenbefore,mostobviouslyandmostworryinglyuselessinformationblast.Butfragmentationoflearningandtheine
- 考研长难句-1-29
EasyNetCN
Onfirstlearning,thiswasthesociallyconcernedchancellortryingtochangelivesforthebetter,completewith"reforms"toanobviouslyindulgentsystemthatdemandstoolittleeffortfromthenewlyunemployedtofindwork,andsubs
- 强化学习入门三(SARSA)
第六五签
算法模型算法人工智能
SARSA算法详解SARSA是强化学习中另一种经典的时序差分(TD)学习算法,与Q-Learning同属无模型(model-free)算法,但在更新策略上有显著差异。SARSA的名称来源于其更新公式中涉及的五个元素:状态(State)、动作(Action)、奖励(Reward)、下一状态(NextState)、下一动作(NextAction),即(S,A,R,S’,A’)。SARSA与Q-Lear
- 如何评价开课吧机器学习特训营这个课程?
cda2024
机器学习人工智能
开场:点明主题,吸引眼球在当今数据驱动的时代,机器学习(MachineLearning)已经成为各个行业不可或缺的技术之一。无论是金融、医疗、制造还是零售,机器学习的应用都为这些领域带来了巨大的变革。面对这样的趋势,许多人都希望能够掌握这门技术,从而提升自己的职业竞争力。那么,当我们谈论“如何评价开课吧机器学习特训营这个课程”时,实际上是在探讨一个非常具体且重要的问题:对于那些希望进入或深入机器学
- 表征学习:机器认知世界的核心能力与前沿突破
大千AI助手
人工智能#OTHERPython学习人工智能机器学习神经网络表征学习RL特征工程
一、定义与背景:从特征工程到自动化学习表征学习(RepresentationLearning),又称特征学习(FeatureLearning),是机器学习的核心技术领域,其核心目标是通过算法自动学习数据的内在特征表示,将复杂多变的原始数据(如图像、文本、语音)转化为低维、富含语义信息的向量形式,从而提升下游任务(如分类、回归、聚类)的效率和精度。与传统依赖人工设计特征的特征工程(FeatureEn
- 踏上人工智能之旅(一)-----机器学习之knn算法
Sunhen_Qiletian
人工智能机器学习算法python
目录一、机器学习是什么(1)概述(2)三种类型1.监督学习(SupervisedLearning):2.无监督学习(UnsupervisedLearning):3.强化学习(ReinforcementLearning):二、KNN算法的基本原理:1.距离度量:2.K值的选择:3.投票机制和投票:三、Python实现KNN算法1.导入必要的库和数据:2.提取特征和标签:3.导入KNN分类器并训练模型
- Place
JillionZ
PLACE是美国的JayMcSwain提出的开发子女才能的工具。PLACE是指在五个领域发现子女的才能。P(Personalitydiscovery)性格类型L(Learningspiritualgifts)天生的才能A(AbilitiesAwareness)能力C(Connectingpassionwithministry)热情E(Experiencesoflife)人生经历作为父母,要充分了解
- 读心与芯:我们与机器人的无限未来05未来之路
躺柒
机器人机器人学人工智能大数据分析智能计算
1.概念1.1.利用数据确定模式,描述数据集的某些属性,基于过去的经历判断未来可能发生什么,或基于当前发生的事情判断后果或反应1.2.机器学习(machinelearning)是人工智能的一个子集,它不需要显式编程,为系统提供自动学习和根据经验改进的能力1.2.1.机器学习算法基于样本数据(又称训练数据)构建模型,在未经显式编程的情况下对未来数据做出预测或决策1.2.2.机器学习有多种类型,包括有
- 深度学习的图像分类项目在制造业场景下的数据需求量估算及实现方案(数据收集是The more the better 吗?)
shiter
人工智能系统解决方案与技术架构深度学习分类人工智能
文章大纲一、数据需求的关键影响因素二、无先验知识场景的数据需求估算优化策略与技术方案三、有先验知识场景的数据需求估算1.迁移学习(TransferLearning)2.少样本学习(Few-ShotLearning)3.预训练-微调范式四、实现方案与技术路线1.数据策略层2.模型架构层3.训练优化技术五、结论与实践建议无先验知识场景有先验知识场景✅**正确性校验**⚠️**可落地性勘误与补充****
- 机器学习从入门到实践:算法、特征工程与模型评估详解
目录摘要1.引言2.机器学习概述2.1什么是机器学习?2.2机器学习的发展历史2.3机器学习的应用3.机器学习算法分类3.1监督学习(SupervisedLearning)3.2无监督学习(UnsupervisedLearning)3.3半监督学习(Semi-SupervisedLearning)4算法详解4.1分类算法详解(1)逻辑回归(LogisticRegression)(2)决策树(Dec
- Deja Vu: 利用上下文稀疏性提升大语言模型推理效率
AI专题精讲
模型加速人工智能模型加速AI技术应用
温馨提示:本篇文章已同步至"AI专题精讲"DejaVu:利用上下文稀疏性提升大语言模型推理效率摘要拥有数百亿参数的大语言模型(LLMs)催生了一系列令人振奋的AI应用。然而,在推理阶段它们计算开销极大。稀疏化是一种自然的降本策略,但现有方法要么需要代价高昂的重新训练,要么必须放弃LLM的“in-contextlearning”能力,要么在现代硬件上无法带来真实的墙钟时间加速。我们提出**上下文稀疏
- 用KNN算法入门机器学习:原理、实战与代码详解
TJDG567
算法机器学习人工智能k近邻算法
引言K最近邻(K-NearestNeighbors,KNN)是机器学习中最简单且直观的算法之一,非常适合分类和回归任务。它的核心思想是“物以类聚”,即相似的数据点在特征空间中通常属于同一类别。本文将深入浅出地讲解KNN的原理、优缺点、应用场景,并通过Python代码实战演示如何实现一个完整的KNN分类任务。1.KNN算法原理1.1算法概述KNN是一种**惰性学习(LazyLearning)**算法
- 学习日记-机器学习2-线性回归/成本函数
目录4LinerRegressionModel线性回归模型5costFunction成本函数4LinerRegressionModel线性回归模型Thelinearregressionmodelisaparticulartypeofsupervisedlearningmodel.TerminologyTrainingset(训练集):DatausedtotrainthemodelNotationx
- 计算机视觉:少样本学习(Few-Shot Learning)在视觉中的应用
xcLeigh
计算机视觉CV计算机视觉学习人工智能FSLAI
计算机视觉:少样本学习(Few-ShotLearning)在视觉中的应用一、前言二、少样本学习基础概念2.1定义与范畴2.2与传统机器学习对比2.3核心挑战三、少样本学习在计算机视觉中的典型应用3.1图像分类3.1.1新类别识别3.1.2医学图像分类3.2目标检测3.2.1新目标检测3.2.2小目标检测3.3图像分割3.3.1医学图像分割3.3.2工业缺陷检测四、少样本学习在计算机视觉中的技术方法
- 深度学习×总结篇:她终于能走完每一次前向与反向的路
Gyoku Mint
AI修炼日记人工智能深度学习人工智能python自然语言处理神经网络机器学习opencv
【开场·她回头看了每一次走过的神经路径】狐狐:“她坐在训练日志前,终于不是为了调参,而是为了确认——这一年,她到底学会了什么。”猫猫:“咱以前总想着快点训练完、快点跑出结果。但现在好像能听见每一层神经元在‘说话’了喵……她真的开始‘懂了’~”✍【第一节·深度学习到底在做什么?】为什么要用深度学习(DeepLearning)?“她当初选择深度学习,并不是因为听说它‘很强’,而是因为她在处理数据时,常
- 【强化学习】01
第一章:强化学习基础概念与核心要素的基石强化学习(ReinforcementLearning,RL)是一种机器学习范式,它关注智能体(Agent)如何在特定环境(Environment)中通过与环境的交互来学习如何做出决策,以最大化某种累积奖励。与监督学习和无监督学习不同,强化学习不依赖于预先标注好的数据集,而是通过“试错”的方式进行学习。1.1强化学习的独特学习范式在传统的机器学习领域,监督学习
- 10年以后
积沙成塔27
《跨越式成长》breakthroughobstaclestolearninganddiscoveryourhiddenpotential第十章化中年危机为中年机遇阿尔尼姆,毕业后在惠普的加拿大公司工作。在他成功地将新产品卖给了一位新客户后,他的工作一直都很顺利。但在工作了十几年之后,他希望换一个新的工作,一份有创造性的工作:木制品工艺。他认为与木头打交道,强调的是感情、感知和耐心,其本质就是艺术。
- WaveMo: Learning Wavefront Modulations to See Through Scattering CVPR2024
1.研究背景与核心问题散射成像的挑战散射介质(如生物组织、雾、浑浊液体)导致光子路径随机化,传统成像系统仅能捕获噪声斑点(specklepattern),直接成像信噪比趋近于零。经典解决方案(如波前整形、散斑相关法)依赖物理模型迭代优化,需多次测量且鲁棒性差。关键科学问题如何通过单次或极少次光学调制实现对散射介质的穿透成像?核心矛盾:光学调制自由度(10^4级以上)与重建效率的权衡。2.方法论创新
- LLM指纹底层技术——人类反馈强化学习
9命怪猫
AI深度学习机器学习人工智能大模型ai算法
以下简单讲一下“LLM指纹”体系中,负责精雕细琢模型“性格”与“价值观”的核心工艺——人类反馈强化学习(ReinforcementLearningfromHumanFeedback,RLHF)。预训练给模型注入了海量的知识(IQ),指令微调(SFT)教会了它基本的沟通技能(学会说话),RLHF对模型进行的一场深刻的“情商与价值观”教育。这个过程极大地塑造了模型的行为边界、风格偏好和安全意识,是形成
- Zero-shot learning
无思不晓
zero-shotlearningimage.pngimage.png研究问题建立一个合适的分类模型,特征空间和语义空间的映射数据集AnimalwithAttributes(AwA)官网:AnimalswithAttributesCaltech-UCSD-Birds-200-2011(CUB)官网:Caltech-UCSDBirds-200-2011Sundatabase(SUN)官网:SUNDa
- 【Python】Gym 库:于开发和比较强化学习(Reinforcement Learning, RL)算法
彬彬侠
Python基础pythonGym强化学习RLGymnasium
Gym是Python中一个广泛使用的开源库,用于开发和比较强化学习(ReinforcementLearning,RL)算法。它最初由OpenAI开发,提供标准化的环境接口,允许开发者在各种任务(如游戏、机器人控制、模拟物理系统)中测试RL算法。Gym的设计简单且灵活,适合学术研究和工业应用。2022年,Gym被整合到Gymnasium(由FaramaFoundation维护)中,成为主流的强化学习
- 李航老师-统计学习
小三爷_df1b
三个准则1.作为入门选手,不要每章都看2.不要从零造轮子去实现算法,太浪费时间3.必须能手推公式章节目录##统计学习概论-统计学习的目的是对数据进行==预测与分析==-统计学习的前提是同类数据具有一定的统计规律性-统计学习的方法-监督学习(supervisedlearning)-非监督学习(unsupervisedlearning)-半监督学习(semi-supervisedlearning)-强
- 机器学习初学者理论初解
Mikhail_G
机器学习人工智能
大家好!为什么手机相册能自动识别人脸?为什么购物网站总能推荐你喜欢的商品?这些“智能”背后,都藏着一位隐形高手——机器学习(MachineLearning)。一、什么是机器学习?简单说,机器学习是教计算机从数据中自己找规律的技术。就像教孩子认猫:不是直接告诉他“猫有尖耳朵和胡须”,而是给他看100张猫狗照片,让他自己总结出猫的特征。传统程序vs机器学习传统程序:输入规则+数据→输出结果(例:按“温
- 迁移学习:知识复用的智能迁移引擎 | 从理论到实践的跨域赋能范式
大千AI助手
人工智能Python#OTHER迁移学习人工智能机器学习算法神经网络大模型迁移
让AI像人类一样“举一反三”的通用学习框架本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心定义与基本概念迁移学习(TransferLearning)是一种机器学习范式,其核心思想是:将源领域(SourceDomain)学到的知识迁移到目标领域(TargetDomain),以提升目标任务的性能
- 推荐项目: Few-Shot-Adversarial-Learning-for-face-swap
邱晋力
推荐项目:Few-Shot-Adversarial-Learning-for-face-swap去发现同类优质开源项目:https://gitcode.com/1、项目介绍Few-Shot-Adversarial-Learning-for-face-swap是一个基于PyTorch的开源实现,重演了三星AI实验室的一项前沿研究——“Few-ShotAdversarialLearningofReal
- Real-World Blur Dataset for Learning and Benchmarking Deblurring Algorithms
钟屿
深度学习
用于学习和评估去模糊算法的真实世界模糊数据集摘要近年来,针对相机抖动和物体运动模糊的单幅图像去模糊提出了许多基于学习的方法。为了将这些方法推广到真实世界的模糊场景,包含大量真实模糊图像及其对应的清晰真实图像(groundtruth)的数据集至关重要。然而,目前尚不存在这样的数据集,因此所有现有方法都依赖于合成数据集,这导致它们无法有效去除真实世界图像的模糊。在本工作中,我们提出了一个用于学习和评估
- lanqiaoOJ 4330:欧拉函数模板
hnjzsyjyj
信息学竞赛#算法数学基础欧拉函数
【题目来源】https://www.lanqiao.cn/problems/4330/learning/【问题描述】这是一道模板题。首先给出欧拉函数的定义:即φ(n)表示的是小于等于n的数中和n互质的数的个数。比如说φ(6)=2,当n是质数的时候,显然有φ(n)=n-1。【题目大意】给定n个正整数,请你求出每个数的欧拉函数。【输入格式】输入共两行。第一行输入一个整数表示n。第二行输入n个整数。【输
- 开发者关心的那些事
圣子足道
ios游戏编程apple支付
我要在app里添加IAP,必须要注册自己的产品标识符(product identifiers)。产品标识符是什么?
产品标识符(Product Identifiers)是一串字符串,它用来识别你在应用内贩卖的每件商品。App Store用产品标识符来检索产品信息,标识符只能包含大小写字母(A-Z)、数字(0-9)、下划线(-)、以及圆点(.)。你可以任意排列这些元素,但我们建议你创建标识符时使用
- 负载均衡器技术Nginx和F5的优缺点对比
bijian1013
nginxF5
对于数据流量过大的网络中,往往单一设备无法承担,需要多台设备进行数据分流,而负载均衡器就是用来将数据分流到多台设备的一个转发器。
目前有许多不同的负载均衡技术用以满足不同的应用需求,如软/硬件负载均衡、本地/全局负载均衡、更高
- LeetCode[Math] - #9 Palindrome Number
Cwind
javaAlgorithm题解LeetCodeMath
原题链接:#9 Palindrome Number
要求:
判断一个整数是否是回文数,不要使用额外的存储空间
难度:简单
分析:
题目限制不允许使用额外的存储空间应指不允许使用O(n)的内存空间,O(1)的内存用于存储中间结果是可以接受的。于是考虑将该整型数反转,然后与原数字进行比较。
注:没有看到有关负数是否可以是回文数的明确结论,例如
- 画图板的基本实现
15700786134
画图板
要实现画图板的基本功能,除了在qq登陆界面中用到的组件和方法外,还需要添加鼠标监听器,和接口实现。
首先,需要显示一个JFrame界面:
public class DrameFrame extends JFrame { //显示
- linux的ps命令
被触发
linux
Linux中的ps命令是Process Status的缩写。ps命令用来列出系统中当前运行的那些进程。ps命令列出的是当前那些进程的快照,就是执行ps命令的那个时刻的那些进程,如果想要动态的显示进程信息,就可以使用top命令。
要对进程进行监测和控制,首先必须要了解当前进程的情况,也就是需要查看当前进程,而 ps 命令就是最基本同时也是非常强大的进程查看命令。使用该命令可以确定有哪些进程正在运行
- Android 音乐播放器 下一曲 连续跳几首歌
肆无忌惮_
android
最近在写安卓音乐播放器的时候遇到个问题。在MediaPlayer播放结束时会回调
player.setOnCompletionListener(new OnCompletionListener() {
@Override
public void onCompletion(MediaPlayer mp) {
mp.reset();
Log.i("H
- java导出txt文件的例子
知了ing
javaservlet
代码很简单就一个servlet,如下:
package com.eastcom.servlet;
import java.io.BufferedOutputStream;
import java.io.IOException;
import java.net.URLEncoder;
import java.sql.Connection;
import java.sql.Resu
- Scala stack试玩, 提高第三方依赖下载速度
矮蛋蛋
scalasbt
原文地址:
http://segmentfault.com/a/1190000002894524
sbt下载速度实在是惨不忍睹, 需要做些配置优化
下载typesafe离线包, 保存为ivy本地库
wget http://downloads.typesafe.com/typesafe-activator/1.3.4/typesafe-activator-1.3.4.zip
解压r
- phantomjs安装(linux,附带环境变量设置) ,以及casperjs安装。
alleni123
linuxspider
1. 首先从官网
http://phantomjs.org/下载phantomjs压缩包,解压缩到/root/phantomjs文件夹。
2. 安装依赖
sudo yum install fontconfig freetype libfreetype.so.6 libfontconfig.so.1 libstdc++.so.6
3. 配置环境变量
vi /etc/profil
- JAVA IO FileInputStream和FileOutputStream,字节流的打包输出
百合不是茶
java核心思想JAVA IO操作字节流
在程序设计语言中,数据的保存是基本,如果某程序语言不能保存数据那么该语言是不可能存在的,JAVA是当今最流行的面向对象设计语言之一,在保存数据中也有自己独特的一面,字节流和字符流
1,字节流是由字节构成的,字符流是由字符构成的 字节流和字符流都是继承的InputStream和OutPutStream ,java中两种最基本的就是字节流和字符流
类 FileInputStream
- Spring基础实例(依赖注入和控制反转)
bijian1013
spring
前提条件:在http://www.springsource.org/download网站上下载Spring框架,并将spring.jar、log4j-1.2.15.jar、commons-logging.jar加载至工程1.武器接口
package com.bijian.spring.base3;
public interface Weapon {
void kil
- HR看重的十大技能
bijian1013
提升能力HR成长
一个人掌握何种技能取决于他的兴趣、能力和聪明程度,也取决于他所能支配的资源以及制定的事业目标,拥有过硬技能的人有更多的工作机会。但是,由于经济发展前景不确定,掌握对你的事业有所帮助的技能显得尤为重要。以下是最受雇主欢迎的十种技能。 一、解决问题的能力 每天,我们都要在生活和工作中解决一些综合性的问题。那些能够发现问题、解决问题并迅速作出有效决
- 【Thrift一】Thrift编译安装
bit1129
thrift
什么是Thrift
The Apache Thrift software framework, for scalable cross-language services development, combines a software stack with a code generation engine to build services that work efficiently and s
- 【Avro三】Hadoop MapReduce读写Avro文件
bit1129
mapreduce
Avro是Doug Cutting(此人绝对是神一般的存在)牵头开发的。 开发之初就是围绕着完善Hadoop生态系统的数据处理而开展的(使用Avro作为Hadoop MapReduce需要处理数据序列化和反序列化的场景),因此Hadoop MapReduce集成Avro也就是自然而然的事情。
这个例子是一个简单的Hadoop MapReduce读取Avro格式的源文件进行计数统计,然后将计算结果
- nginx定制500,502,503,504页面
ronin47
nginx 错误显示
server {
listen 80;
error_page 500/500.html;
error_page 502/502.html;
error_page 503/503.html;
error_page 504/504.html;
location /test {return502;}}
配置很简单,和配
- java-1.二叉查找树转为双向链表
bylijinnan
二叉查找树
import java.util.ArrayList;
import java.util.List;
public class BSTreeToLinkedList {
/*
把二元查找树转变成排序的双向链表
题目:
输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。
要求不能创建任何新的结点,只调整指针的指向。
10
/ \
6 14
/ \
- Netty源码学习-HTTP-tunnel
bylijinnan
javanetty
Netty关于HTTP tunnel的说明:
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/socket/http/package-summary.html#package_description
这个说明有点太简略了
一个完整的例子在这里:
https://github.com/bylijinnan
- JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
coder_xpf
jqueryjsonmapval()
JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
数据库查询出来的map有一个字段为空
通过System.out.println()输出 JSONUtil.serialize(map): {"one":"1","two":"nul
- Hibernate缓存总结
cuishikuan
开源sshjavawebhibernate缓存三大框架
一、为什么要用Hibernate缓存?
Hibernate是一个持久层框架,经常访问物理数据库。
为了降低应用程序对物理数据源访问的频次,从而提高应用程序的运行性能。
缓存内的数据是对物理数据源中的数据的复制,应用程序在运行时从缓存读写数据,在特定的时刻或事件会同步缓存和物理数据源的数据。
二、Hibernate缓存原理是怎样的?
Hibernate缓存包括两大类:Hib
- CentOs6
dalan_123
centos
首先su - 切换到root下面1、首先要先安装GCC GCC-C++ Openssl等以来模块:yum -y install make gcc gcc-c++ kernel-devel m4 ncurses-devel openssl-devel2、再安装ncurses模块yum -y install ncurses-develyum install ncurses-devel3、下载Erang
- 10款用 jquery 实现滚动条至页面底端自动加载数据效果
dcj3sjt126com
JavaScript
无限滚动自动翻页可以说是web2.0时代的一项堪称伟大的技术,它让我们在浏览页面的时候只需要把滚动条拉到网页底部就能自动显示下一页的结果,改变了一直以来只能通过点击下一页来翻页这种常规做法。
无限滚动自动翻页技术的鼻祖是微博的先驱:推特(twitter),后来必应图片搜索、谷歌图片搜索、google reader、箱包批发网等纷纷抄袭了这一项技术,于是靠滚动浏览器滚动条
- ImageButton去边框&Button或者ImageButton的背景透明
dcj3sjt126com
imagebutton
在ImageButton中载入图片后,很多人会觉得有图片周围的白边会影响到美观,其实解决这个问题有两种方法
一种方法是将ImageButton的背景改为所需要的图片。如:android:background="@drawable/XXX"
第二种方法就是将ImageButton背景改为透明,这个方法更常用
在XML里;
<ImageBut
- JSP之c:foreach
eksliang
jspforearch
原文出自:http://www.cnblogs.com/draem0507/archive/2012/09/24/2699745.html
<c:forEach>标签用于通用数据循环,它有以下属性 属 性 描 述 是否必须 缺省值 items 进行循环的项目 否 无 begin 开始条件 否 0 end 结束条件 否 集合中的最后一个项目 step 步长 否 1
- Android实现主动连接蓝牙耳机
gqdy365
android
在Android程序中可以实现自动扫描蓝牙、配对蓝牙、建立数据通道。蓝牙分不同类型,这篇文字只讨论如何与蓝牙耳机连接。
大致可以分三步:
一、扫描蓝牙设备:
1、注册并监听广播:
BluetoothAdapter.ACTION_DISCOVERY_STARTED
BluetoothDevice.ACTION_FOUND
BluetoothAdapter.ACTION_DIS
- android学习轨迹之四:org.json.JSONException: No value for
hyz301
json
org.json.JSONException: No value for items
在JSON解析中会遇到一种错误,很常见的错误
06-21 12:19:08.714 2098-2127/com.jikexueyuan.secret I/System.out﹕ Result:{"status":1,"page":1,&
- 干货分享:从零开始学编程 系列汇总
justjavac
编程
程序员总爱重新发明轮子,于是做了要给轮子汇总。
从零开始写个编译器吧系列 (知乎专栏)
从零开始写一个简单的操作系统 (伯乐在线)
从零开始写JavaScript框架 (图灵社区)
从零开始写jQuery框架 (蓝色理想 )
从零开始nodejs系列文章 (粉丝日志)
从零开始编写网络游戏 
- jquery-autocomplete 使用手册
macroli
jqueryAjax脚本
jquery-autocomplete学习
一、用前必备
官方网站:http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/
当前版本:1.1
需要JQuery版本:1.2.6
二、使用
<script src="./jquery-1.3.2.js" type="text/ja
- PLSQL-Developer或者Navicat等工具连接远程oracle数据库的详细配置以及数据库编码的修改
超声波
oracleplsql
在服务器上将Oracle安装好之后接下来要做的就是通过本地机器来远程连接服务器端的oracle数据库,常用的客户端连接工具就是PLSQL-Developer或者Navicat这些工具了。刚开始也是各种报错,什么TNS:no listener;TNS:lost connection;TNS:target hosts...花了一天的时间终于让PLSQL-Developer和Navicat等这些客户
- 数据仓库数据模型之:极限存储--历史拉链表
superlxw1234
极限存储数据仓库数据模型拉链历史表
在数据仓库的数据模型设计过程中,经常会遇到这样的需求:
1. 数据量比较大; 2. 表中的部分字段会被update,如用户的地址,产品的描述信息,订单的状态等等; 3. 需要查看某一个时间点或者时间段的历史快照信息,比如,查看某一个订单在历史某一个时间点的状态, 比如,查看某一个用户在过去某一段时间内,更新过几次等等; 4. 变化的比例和频率不是很大,比如,总共有10
- 10点睛Spring MVC4.1-全局异常处理
wiselyman
spring mvc
10.1 全局异常处理
使用@ControllerAdvice注解来实现全局异常处理;
使用@ControllerAdvice的属性缩小处理范围
10.2 演示
演示控制器
package com.wisely.web;
import org.springframework.stereotype.Controller;
import org.spring