- 目标跟踪领域经典论文解析
♢.*
目标跟踪人工智能计算机视觉
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、JAVA、PYTHON与SAP的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!目标跟踪是计算机视觉领域的一个
- 论文解析:一文弄懂ResNet(图像识别分类、目标检测)
Nelson_hehe
深度学习-计算机视觉论文精读系列分类目标检测ResNet残差网络深度学习计算机视觉
目录一、相关资源二、Motivation三、技术细节1.残差学习过程2.快捷连接类型(1)IdentityShortcuts(恒等捷径)(2)ProjectionShortcuts(投影捷径)(3)两种捷径对比3.深层瓶颈结构DeeperBottleneckArchitectures四、网络结构及参数选择1.主网络2.残差连接五、创新点1.残差学习框架的提出2.高效的残差块设计3.极深网络的成功训
- 【图像大模型】ControlNet:深度条件控制的生成模型架构解析
白熊188
图像大模型算法机器学习人工智能图像生成
ControlNet:深度条件控制的生成模型架构解析一、核心原理与技术突破1.1基础架构设计1.2零卷积初始化1.3多条件控制机制二、系统架构与实现细节2.1完整处理流程2.2性能指标对比三、实战部署指南3.1环境配置3.2基础推理代码3.3高级控制参数四、典型问题解决方案4.1控制条件失效4.2显存不足4.3生成结果模糊五、理论基础与论文解析5.1核心算法公式5.2关键参考文献六、进阶应用开发6
- 谷歌medgemma-27b-text-it医疗大模型论文速读:多语言大型语言模型医学问答基准测试MedExpQA
Open-source-AI
前沿语言模型人工智能深度学习自然语言处理大模型开源
《MedExpQA:多语言大型语言模型医学问答基准测试》论文解析一、引言论文开篇指出大型语言模型(LLMs)在医学领域的巨大潜力,尤其是在医学问答(QA)方面。尽管LLMs在医学执照考试等场景中取得了令人瞩目的成绩,但它们在医学应用中仍存在诸多不足。例如,LLMs可能会生成过时信息或幻觉内容(hallucinatedcontent),即看似合理但事实错误的答案。此外,现有的医学问答基准测试缺乏医学
- Diffusion Model相关论文解析之(一)Denoising Diffusion Probabilistic Models
mm_exploration
Diffusion论文解读pythonpytorchdiffusion计算机视觉
目录1、摘要2、创新点3、主要公式4、主要实现过程1、摘要DenoisingDiffusionProbabilisticModels(DDPMs)是一种基于参数化的马尔可夫链的模型,它使用变分推理进行训练,以在有限时间内生成与数据匹配的样本。这种模型通过逆扩散过程逐渐向样本中添加噪声,直到信号完全破坏,从而实现样本生成。在采样过程中,当扩散由少量的高斯噪声组成时,可以将采样链转换设置为条件高斯
- Sparse4D: Multi-view 3D Object Detection with Sparse Spatial-Temporal Fusion论文解析
butterfly won't love flowers
稀疏检测任务目标检测人工智能计算机视觉
一、背景对于基于多视角图像的3D目标检测,现有的工作有两个方向,分别是稀疏检测与基于BEV的检测方法。其中BEV方法是将多视图的图像特征转到BEV空间上执行下游任务,但是它的缺点是BEV特征图的构建需要从各个视角特征图进行稠密的采样工作,BEV构建复杂且资源需求高;并且感知范围受BEV特征图尺度的限制,因此需要在感知范围、效率与准确度间权;此外就是BEV特征图将高度维度压缩,导致其对于一些在高度层
- 从零实现多模态论文解析AI:代码详解与实战演示
夏末之花
人工智能
一、需求分析与技术选型1.1为什么需要多模态论文解析?处理PDF中的文本、公式、图表混合内容实现跨模态语义理解(如图表描述生成)构建智能问答系统(Q&AoverPDF)1.2技术架构设计graphTDA[PDF输入]-->B(文本提取)A-->C(图像提取)B-->D[文本理解]C-->E[图像理解]D-->F[多模态融合]E-->FF-->G[知识图谱]G-->H{应用接口}H-->I[智能问答
- 2023和2024历年美赛数学建模赛题,算法模型分析!
灿灿数模分号
数学建模
文末获取历年优秀论文解析,可交流解答2023年题目分析MCM(MathematicalContestinModeling)问题A:遭受旱灾的植物群落概述:要求建立预测模型,模拟植物群落在干旱和降水充裕条件下随时间的变化。类型:评价及预测类可能采用的模型和算法:时间序列分析:用于预测植物群落数量和种类的变化趋势。生态模型:如Logistic增长模型,描述种群动态。差分方程:模拟不同植物类型随时间的变
- Neurlps2024论文解析|Understanding Representation of Deep Equilibrium Models from Neural Collapse
SJ_HP
论文合集深度均衡模型神经坍缩隐式神经网络不平衡数据集特征收敛自对偶性质
论文标题UnderstandingRepresentationofDeepEquilibriumModelsfromNeuralCollapsePerspective从神经坍缩视角理解深度均衡模型的表示论文链接UnderstandingRepresentationofDeepEquilibriumModelsfromNeuralCollapsePerspective论文下载论文作者Haixiang
- 「重磅」Sci.Robot最新封面:由多种人体肌肉组织驱动的生物混合手,人机融合取得新突破
天机️灵韵
具身智能人工智能硬件设备机器人生物信息学具身智能人工智能
ScienceRobotics查看原文:https://www.science.org/doi/10.1126/scirobotics.adr5512论文解析:《Biohybridhandactuatedbymultiplehumanmuscletissues》研究背景与目标本研究提出了一种基于生物混合技术的机械手,通过集成多个人体骨骼肌组织(MuMuTA,Multi-MaterialMulti-
- 【deepseek】论文笔记--DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
大表哥汽车人
人工智能大语言模型学习笔记论文阅读人工智能deepseek
DeepSeek-R1论文解析1.论文基本信息标题:DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcementLearning作者:DeepSeek-AI团队(联系邮箱:
[email protected])发表时间与出处:2024年,AIME2024(人工智能与数学教育国际会议)关键词:ReinforcementLe
- 每周编辑精选|RJUA-QA 医疗数据集上线、 3D 分子生成模型 ResGen 论文解析
HyperAI超神经
AIforscience
HyperAI超神经的新栏目来啦~每周一超神经编辑部会精选上一周更新在hyper.ai官网的内容(数据集、AI4S论文案例、百科词条)发布在这里。欢迎直接访问hyper.ai查看全部内容哦!1月15日-1月21日,hyper.ai官方网站更新速览:优质公共数据集:10个AI4S论文案例:2篇热门百科词条:10条访问官网:https://hyper.ai/公开数据集精选1.CrossDock2020
- NeRF算法论文解析与翻译
超爱吃小蛋糕的66
深度学习算法人工智能深度学习三维重建NeRF
文章目录说明摘要一、简介二、相关工作2.1基于神经网络的3D形状表示2.2视图合成和基于图像的渲染三、基于神经辐射场的场景表示四、基于辐射场的体渲染五、神经辐射场优化5.1位置编码5.2分层体积采样5.3实施细则和损失函数说明NeRF:将场景表示为用于视图合成的神经辐射场本文主要对NeRF论文进行翻译(黑色字体),同时对一些不理解的概念和算法进行相应批注(红色字体)了解NeRF之前需要了解一些关于
- NeRF算法原理总结概述
超爱吃小蛋糕的66
深度学习算法深度学习人工智能自动驾驶NeRF三维重建
简介本文旨在对NeRF算法进行总结。论文翻译见博客:《NeRF算法论文解析与翻译》参考链接:神经网络辐射场NeRF、实时NeRFBaking、有向距离场SDF、占用网络Occupancy、NeRF自动驾驶NeRF详解NeRF入门之体渲染(VolumeRendering)NeRF中的位置编码1.算法概述整体上NeRF干了这么一件事,输入一组静态场景的连续RGB图像和每帧图像对应的位姿,基于体渲染技术
- Neural Tangent Kernel 理解(一)原论文解读
Bagba
机器学习深度学习神经网络机器学习NTK
欢迎关注WX公众号,每周发布论文解析:PaperShare,点我关注NTK的理解系列暂定会从(一)论文解读,(二)kernelmethod基础知识,(三)神经网络表达能力,(四)GNN表达能力等方面去写。当然,可能有的部分会被拆开为多个小部分来写,毕竟每一个点拿出来都可以写本书了。(本人各个系列旨在让复杂概念通俗易懂,力求获得进一步理解)NeuralTangentKernel(NTK)理论由[1]
- 【Pytorch】学习记录分享11——GAN对抗生成网络
大江东去浪淘尽千古风流人物
DeepLearningpytorch学习生成对抗网络
PyTorchGAN对抗生成网络0.工程实现1.GAN对抗生成网络结构2.GAN构造损失函数(LOSS)3.GAN对抗生成网络核心逻辑3.1参数加载:3.2生成器:3.3判别器:0.工程实现原理解析:论文解析:GAN:GenerativeAdversarialNets1.GAN对抗生成网络结构2.GAN构造损失函数(LOSS)LOSS公式与含义:LOSS代码实现:importtorchfromto
- 从 YOLOv1 到 YOLO-NAS 的所有 YOLO 模型:论文解析
T1.Faker
深度学习YOLO目标检测
在计算机视觉的浩瀚领域,有一支耀眼的明星,她的名字传颂着革新与突破的传奇——YOLO(YouOnlyLookOnce)。回溯时光,走进这个引人注目的名字背后,我们仿佛穿越进一幅画卷,一幅展现创新魅力与技术风华的画卷。很久以前,CVPR2016是一个注定光芒万丈的时刻。在这个充满期待的舞台上,JosephRedmon为世界呈现了一种单阶段目标检测的奇迹,她名为YOLO。这并非仅是一个算法,更是一曲深
- 3D hand pose:MediaPipe Hands: On-device Real-time Hand Tracking
AIRV_Gao
论文笔记深度学习计算机视觉手势姿态估计
MediaPipeHands:On-deviceReal-timeHandTracking论文解析0.摘要1.Introduction2.框架2.1BlazePalmDetector2.2HandLandmarkModel3.DatasetandAnnotation4.Results5.MediaPipegraphforhandtracking6.手势识别的应用论文链接:https://arxiv
- MatchPyramid实现文本匹配
愤怒的可乐
NLP项目实战#文本匹配实战MatchPyramid
引言今天利用MatchPyramid实现文本匹配。原论文解析→点此←。MatchPyramid核心思想是计算两段文本间的匹配矩阵,把它当成一个图形利用多层卷积网络提取不同层级的交互模式。匹配矩阵是通过计算两段输入文本基本单元(比如字或词)之间相似度得到的,作者提出了三种相似度计算函数。我们的实现采用余弦相似度。整体结构如上图所示。使用了两层卷积网络;每层卷积网络接一个最大池化层;最后利用两个全连接
- Make Pixels Dance: High-Dynamic Video Generation论文解析
江小皮不皮
人工智能深度学习PixelDance文本生成视频计算机视觉动态视频生成
高动态视频生成的新进展MakePixelsDance:High-DynamicVideoGeneration高动态视频生成的新进展前言视频生成模式摘要论文十问实验数据集定量评估指标消融研究训练和推理技巧训练技术推理技术更多的应用MakePixelsDance:High-DynamicVideoGeneration高动态视频生成的新进展前言动态视频生成一直是人工智能领域的一个重要且富有挑战性的目标。
- 软考高级系统架构设计师论文真题分析系列之:论软件架构风格
最笨的羊羊
软考高级系统架构设计师考试软考高级系统架构设计师论文真题分析系列论软件架构风格
软考高级系统架构设计师论文真题分析系列之:论软件架构风格一、论软件架构风格二、论文解析三、详细介绍架构风格的模型和含义1.数据流风格2.调用/返回风格3.独立构件风格4.虚拟机风格5.仓库风格一、论软件架构风格软件架构风格是描述某一特定应用领域中系统组织方式的惯用方式,定义一个系统家族,即一个体系结构定义一个词汇表和一组约束。**词汇表中包含一些构件和连接件类型,而这组约束指出系统是如何将这些构件
- 车道线检测:LSTR论文解析
AIRV_Gao
论文笔记车道线检测Transformers
车道线检测:End-to-endLaneShapePredictionwithTransformers论文解析1.Abstract2.Introduction3.RelatedWork4.Method4.1车道形状模型(LaneShapeModel)曲线的重新参数化4.2匈牙利拟合损失(HungarianFittingLoss)4.3网络结构4.3.1Backbone4.3.2Encoder4.3
- Zephyr-7B论文解析及全量训练、Lora训练
神洛华
LLMsllmnlp
文章目录一、Zephyr:DirectDistillationofLMAlignment1.1开发经过1.1.1Zephyr-7B-alpha1.1.2Zephyr-7B-beta1.2摘要1.3相关工作1.4算法1.4.1蒸馏监督微调(dSFT)1.4.2基于偏好的AI反馈(AIF)1.4.3直接蒸馏偏好优化(dDPO)1.4.4训练细节1.5实验二、alignment-handbook:低成本
- 【AlphaGo论文学习】Mastering the game of Go without human knowledge翻译及心得
PokiFighting
机器学习深度学习深度学习
原文地址:https://www.gwern.net/docs/reinforcement-learning/alphago/2017-silver.pdf参考的别人的学习解析:AlphaGoZero论文解析|蘑菇先生学习记更直接的论文翻译:【论文翻译】MasteringthegameofGowithouthumanknowledge(无师自通---在不借助人类知识的情况下学会围棋)_hwnbox
- STD-Trees: Spatio-temporal Deformable Trees for Multirotors Kinodynamic Planning (论文解析)
聪明小張
路径规划算法人工智能
STD-Trees:Spatio-temporalDeformableTreesforMultirotorsKinodynamicPlanning(论文解析)动态变形树树边表示轨迹树变形数值结果仿真结果一般的轨迹优化方案中仅考虑到空间约束、障碍物约束、动力学约束等,本文的轨迹运动设计方案增加时间维度的优化设计,提出动力学规划中的时空变形方法,使生成的轨迹更偏向于最优轨迹。提出以变形单元的形式对树进
- Fast R-CNN论文解析
小毛激励我好好学习
目标检测计算机视觉神经网络
文章目录一、介绍二、拟解决的关键问题三、FastR-CNN结构以及训练算法1.整体结构2.ROIPoolingLayer3.Pre-TrainedNetwork4.目标检测任务的微调5.尺度不变性四、总结五、参考文献本篇博客将要解析的论文是FastR-CNN,论文地址为:https://arxiv.org/abs/1504.08083一、介绍本文是RossGirshick于2015年发表的一篇文章
- 更快更准 | YOLOv3算法超详细解析(包括诞生背景+论文解析+技术原理等)
小哥谈
YOLO算法:基础+进阶+改进YOLO目标检测人工智能机器学习深度学习yolov3
前言:Hello大家好,我是小哥谈。YOLOv3是一种基于深度学习的目标检测算法,它可以快速而准确地在图像中检测出多个目标。它是由JosephRedmon和AliFarhadi在2018年提出的,是YOLO(YouOnlyLookOnce)系列算法的第三个版本。YOLOv3算法使用了Darknet-53网络作为其主干网络,并且采用了多尺度预测和多个尺度的边界框来提高检测效果。本篇文章就详细讲述一下
- 【阅读笔记】Federated Learning for Privacy-Preserving AI
HERODING77
联邦学习人工智能机器学习深度学习联邦学习PPFL
FederatedLearningforPrivacy-PreservingAI前言一、论文解析DefinitionCategorizationArchitectureApplicationExamplesUseCase1:FedRiskCtrlUseCase2:FedVisionOutlook二、论文总结三、个人感悟前言一篇来自CommunicationsofACM的文章,这类期刊相当于maga
- Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection(论文解析)
黄阳老师
目标检测人工智能计算机视觉
GroundingDINO:MarryingDINOwithGroundedPre-TrainingforOpen-SetObjectDetection:根据文字提示检测任意目标摘要1介绍2相关工作3.GroundingDINO3.1.特征提取和增强器3.2.语言引导的查询选择3.3.交叉模态解码器3.4.子句级别文本特征3.5.损失函数4实验4.1.设置4.2.Zero-ShotTransfer
- Detecting Everything in the Open World: Towards Universal Object Detection(论文解析)
黄阳老师
目标检测人工智能计算机视觉
DetectingEverythingintheOpenWorld:TowardsUniversalObjectDetection摘要1介绍2相关工作3准备工作4TheUniDetector框架4.1.异构标签空间训练4.2.开放世界推理5实验5.1.开放世界中的目标检测5.2.封闭世界中的目标检测5.3.广泛目标检测5.4开放词汇目标检测比较5.5.消融实验6结论摘要在本文中,我们正式探讨了通用
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc