MatchPyramid实现文本匹配

引言

今天利用MatchPyramid实现文本匹配。

原论文解析→点此←。

MatchPyramid

核心思想是计算两段文本间的匹配矩阵,把它当成一个图形利用多层卷积网络提取不同层级的交互模式。

匹配矩阵是通过计算两段输入文本基本单元(比如字或词)之间相似度得到的,作者提出了三种相似度计算函数。我们的实现采用余弦相似度。

MatchPyramid实现文本匹配_第1张图片

整体结构如上图所示。使用了两层卷积网络;每层卷积网络接一个最大池化层;最后利用两个全连接层将维度映射到目标类别数;特征图个数(out_channel)分别是8和16;卷积核大小分别是 5 × 5 5\times 5 5×5 3 × 3 3 \times 3 3×3

模型的实现可以说非常简单,比之前的RE2简单多了。所以先直接贴出完整代码,再分析。

class MatchPyramid(nn.Module):
    def __init__(self, args: Namespace):
        super().__init__()

        self.embedding = nn.Embedding(
            args.vocab_size, args.embedding_dim, padding_idx=0
        )

        self.conv1 = nn.Conv2d(
            in_channels=1,
            out_channels=args.out_channels[0],
            kernel_size=args.kernel_sizes[0],
        )
        self.conv2 = nn.Conv2d(
            in_channels=args.out_channels[0],
            out_channels=args.out_channels[1],
            kernel_size=args.kernel_sizes[1],
        )
        self.pool1 = nn.AdaptiveMaxPool2d(args.pool_sizes[0])
        self.pool2 = nn.AdaptiveMaxPool2d(args.pool_sizes[1])

        self.linear = torch.nn.Linear(
            args.out_channels[1] * args.pool_sizes[1][0] * args.pool_sizes[1][1],
            args.hidden_size,
            bias=True,
        )
        self.prediction = torch.nn.Linear(args.hidden_size, args.num_classes, bias=True)

    def forward(self, a:Tensor, b: Tensor) -> Tensor:
        """

        Args:
            a (Tensor): (batch_size, a_seq_len)
            b (Tensor): (batch_size, b_seq_len)

        Returns:
            Tensor: (batch_size, num_classes)
        """
        batch_size = a.size()[0]

        # (batch_size, a_seq_len, embedding_dim)
        a = self.embedding(a)
        # (batch_size, b_seq_len, embedding_dim)
        b = self.embedding(b)
        # (batch_size, a_seq_len, 1, embedding_dim) x  (batch_size, 1, b_seq_len, embedding_dim)
        # -> (batch_size, a_seq_len, b_seq_len)
        similarity_matrix = F.cosine_similarity(a.unsqueeze(2), b.unsqueeze(1), dim=-1)
        # (batch_size, 1, a_seq_len, b_seq_len)
        similarity_matrix = similarity_matrix.unsqueeze(1)
        # (batch_size, out_channels[0], a_seq_len - kernel_sizes[0][0] + 1, b_seq_len - kernel_sizes[0][1] + 1)
        similarity_matrix = F.relu(self.conv1(similarity_matrix))
        # (batch_size, out_channels[0], pool_sizes[0][0], pool_sizes[0][1])
        similarity_matrix = self.pool1(similarity_matrix)
        # (batch_size, out_channels[1], pool_sizes[1][0] - kernel_sizes[1][0] + 1, pool_sizes[1][1] - kernel_sizes[1][1] + 1)
        similarity_matrix = F.relu(self.conv2(similarity_matrix))
        # (batch_size, out_channels[1], pool_sizes[1][0], pool_sizes[1][1])
        similarity_matrix = self.pool2(similarity_matrix)
        # (batch_size, out_channels[1] * pool_sizes[1][0] * pool_sizes[1][1])
        similarity_matrix = similarity_matrix.view(batch_size, -1)
        # (batch_size, num_classes)
        return self.prediction(F.relu(self.linear(similarity_matrix)))

在初始化中,首先创建另一个嵌入层;然后是两个卷积层和对应的池化层;最后是线性层加预测层。

采用AdaptiveMaxPool2d可以对输入的二维数据进行自适应最大池化操作,即可以指定输出的目标大小。

forward

  1. 分别计算两段输入的嵌入向量;
  2. 计算两个嵌入向量间的余弦相似度矩阵;
  3. 传入第一个卷积网络接着是池化;
  4. 传入第二个卷积网络接着是池化;
  5. 传入预测层

数据准备

数据准备包括

  • 构建词表(Vocabulary)
  • 构建数据集(Dataset)

本次用的是LCQMC通用领域问题匹配数据集,它已经分好了训练、验证和测试集。

我们通过pandas来加载一下。

import pandas as pd

train_df = pd.read_csv(data_path.format("train"), sep="\t", header=None, names=["sentence1", "sentence2", "label"])

train_df.head()

MatchPyramid实现文本匹配_第2张图片

数据是长这样子的,有两个待匹配的句子,标签是它们是否相似。

下面用jieba来处理每个句子。

def tokenize(sentence):
    return list(jieba.cut(sentence))

train_df.sentence1 = train_df.sentence1.apply(tokenize)
train_df.sentence2 = train_df.sentence2.apply(tokenize)

MatchPyramid实现文本匹配_第3张图片

得到分好词的数据后,我们就可以得到整个训练语料库中的所有token:

train_sentences = train_df.sentence1.to_list() + train_df.sentence2.to_list()
train_sentences[0]
['喜欢', '打篮球', '的', '男生', '喜欢', '什么样', '的', '女生']

现在就可以来构建词表了,我们定义一个类:

class Vocabulary:
    """Class to process text and extract vocabulary for mapping"""

    def __init__(self, token_to_idx: dict = None, tokens: list[str] = None) -> None:
        """
        Args:
            token_to_idx (dict, optional): a pre-existing map of tokens to indices. Defaults to None.
            tokens (list[str], optional): a list of unique tokens with no duplicates. Defaults to None.
        """

        assert any(
            [tokens, token_to_idx]
        ), "At least one of these parameters should be set as not None."
        if token_to_idx:
            self._token_to_idx = token_to_idx
        else:
            self._token_to_idx = {}
            if PAD_TOKEN not in tokens:
                tokens = [PAD_TOKEN] + tokens

            for idx, token in enumerate(tokens):
                self._token_to_idx[token] = idx

        self._idx_to_token = {idx: token for token, idx in self._token_to_idx.items()}

        self.unk_index = self._token_to_idx[UNK_TOKEN]
        self.pad_index = self._token_to_idx[PAD_TOKEN]

    @classmethod
    def build(
        cls,
        sentences: list[list[str]],
        min_freq: int = 2,
        reserved_tokens: list[str] = None,
    ) -> "Vocabulary":
        """Construct the Vocabulary from sentences

        Args:
            sentences (list[list[str]]): a list of tokenized sequences
            min_freq (int, optional): the minimum word frequency to be saved. Defaults to 2.
            reserved_tokens (list[str], optional): the reserved tokens to add into the Vocabulary. Defaults to None.

        Returns:
            Vocabulary: a Vocubulary instane
        """

        token_freqs = defaultdict(int)
        for sentence in tqdm(sentences):
            for token in sentence:
                token_freqs[token] += 1

        unique_tokens = (reserved_tokens if reserved_tokens else []) + [UNK_TOKEN]
        unique_tokens += [
            token
            for token, freq in token_freqs.items()
            if freq >= min_freq and token != UNK_TOKEN
        ]
        return cls(tokens=unique_tokens)

    def __len__(self) -> int:
        return len(self._idx_to_token)
    
    def __iter__(self):
        for idx, token in self._idx_to_token.items():
            yield idx, token

    def __getitem__(self, tokens: list[str] | str) -> list[int] | int:
        """Retrieve the indices associated with the tokens or the index with the single token

        Args:
            tokens (list[str] | str): a list of tokens or single token

        Returns:
            list[int] | int: the indices or the single index
        """
        if not isinstance(tokens, (list, tuple)):
            return self._token_to_idx.get(tokens, self.unk_index)
        return [self.__getitem__(token) for token in tokens]

    def lookup_token(self, indices: list[int] | int) -> list[str] | str:
        """Retrive the tokens associated with the indices or the token with the single index

        Args:
            indices (list[int] | int): a list of index or single index

        Returns:
            list[str] | str: the corresponding tokens (or token)
        """

        if not isinstance(indices, (list, tuple)):
            return self._idx_to_token[indices]

        return [self._idx_to_token[index] for index in indices]

    def to_serializable(self) -> dict:
        """Returns a dictionary that can be serialized"""
        return {"token_to_idx": self._token_to_idx}

    @classmethod
    def from_serializable(cls, contents: dict) -> "Vocabulary":
        """Instantiates the Vocabulary from a serialized dictionary


        Args:
            contents (dict): a dictionary generated by `to_serializable`

        Returns:
            Vocabulary: the Vocabulary instance
        """
        return cls(**contents)

    def __repr__(self):
        return f"{len(self)})>"

可以通过build方法传入所有分好词的语句,同时传入min_freq指定保存最少出现次数的单词。

新增了__iter__方法,可以用于迭代。

这里实现了__getitem__来获取token对应的索引,如果传入的是单个token就返回单个索引,如果传入的是token列表,就返回索引列表。类似地,通过lookup_token来根据所以查找对应的token。

vocab = Vocabulary.build(train_sentences)
vocab
100%|██████████| 477532/477532 [00:00<00:00, 651784.13it/s]

我们的词表有35925个token。

有了词表之后,我们就可以向量化句子了,这里也通过一个类来实现。

class TMVectorizer:
    """The Vectorizer which vectorizes the Vocabulary"""

    def __init__(self, vocab: Vocabulary, max_len: int) -> None:
        """
        Args:
            vocab (Vocabulary): maps characters to integers
            max_len (int): the max length of the sequence in the dataset
        """
        self.vocab = vocab
        self.max_len = max_len
        self.padding_index = vocab.pad_index

    def _vectorize(self, indices: list[int], vector_length: int = -1) -> np.ndarray:
        """Vectorize the provided indices

        Args:
            indices (list[int]): a list of integers that represent a sequence
            vector_length (int, optional): an arugment for forcing the length of index vector. Defaults to -1.

        Returns:
            np.ndarray: the vectorized index array
        """

        if vector_length <= 0:
            vector_length = len(indices)

        vector = np.zeros(vector_length, dtype=np.int64)
        if len(indices) > vector_length:
            vector[:] = indices[:vector_length]
        else:
            vector[: len(indices)] = indices
            vector[len(indices) :] = self.padding_index

        return vector

    def _get_indices(self, sentence: list[str]) -> list[int]:
        """Return the vectorized sentence

        Args:
            sentence (list[str]): list of tokens
        Returns:
            indices (list[int]): list of integers representing the sentence
        """
        return [self.vocab[token] for token in sentence]

    def vectorize(
        self, sentence: list[str], use_dataset_max_length: bool = True
    ) -> np.ndarray:
        """
        Return the vectorized sequence

        Args:
            sentence (list[str]): raw sentence from the dataset
            use_dataset_max_length (bool): whether to use the global max vector length
        Returns:
            the vectorized sequence with padding
        """
        vector_length = -1
        if use_dataset_max_length:
            vector_length = self.max_len

        indices = self._get_indices(sentence)
        vector = self._vectorize(indices, vector_length=vector_length)

        return vector

    @classmethod
    def from_serializable(cls, contents: dict) -> "TMVectorizer":
        """Instantiates the TMVectorizer from a serialized dictionary

        Args:
            contents (dict): a dictionary generated by `to_serializable`

        Returns:
            TMVectorizer:
        """
        vocab = Vocabulary.from_serializable(contents["vocab"])
        max_len = contents["max_len"]
        return cls(vocab=vocab, max_len=max_len)

    def to_serializable(self) -> dict:
        """Returns a dictionary that can be serialized

        Returns:
            dict: a dict contains Vocabulary instance and max_len attribute
        """
        return {"vocab": self.vocab.to_serializable(), "max_len": self.max_len}

    def save_vectorizer(self, filepath: str) -> None:
        """Dump this TMVectorizer instance to file

        Args:
            filepath (str): the path to store the file
        """
        with open(filepath, "w") as f:
            json.dump(self.to_serializable(), f)

    @classmethod
    def load_vectorizer(cls, filepath: str) -> "TMVectorizer":
        """Load TMVectorizer from a file

        Args:
            filepath (str): the path stored the file

        Returns:
            TMVectorizer:
        """
        with open(filepath) as f:
            return TMVectorizer.from_serializable(json.load(f))

命名为TMVectorizer表示是用于文本匹配(Text Matching)的专门类,调用vectorize方法一次传入一个分好词的句子就可以得到向量化的表示,支持填充Padding。

同时还支持保存功能,主要是用于保存相关的词表以及TMVectorizer所需的max_len字段。

在本小节的最后,通过继承Dataset来构建专门的数据集。

class TMDataset(Dataset):
    """Dataset for text matching"""

    def __init__(self, text_df: pd.DataFrame, vectorizer: TMVectorizer) -> None:
        """

        Args:
            text_df (pd.DataFrame): a DataFrame which contains the processed data examples
            vectorizer (TMVectorizer): a TMVectorizer instance
        """

        self.text_df = text_df
        self._vectorizer = vectorizer

    def __getitem__(
        self, index: int
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, int]:
        row = self.text_df.iloc[index]

        vector1 = self._vectorizer.vectorize(row.sentence1)
        vector2 = self._vectorizer.vectorize(row.sentence2)

        mask1 = vector1 != self._vectorizer.padding_index
        mask2 = vector2 != self._vectorizer.padding_index

        return (vector1, vector2, mask1, mask2, row.label)

    def get_vectorizer(self) -> TMVectorizer:
        return self._vectorizer

    def __len__(self) -> int:
        return len(self.text_df)

构建函数所需的参数只有两个,分别是处理好的DataFrameTMVectorizer实例。

实现__getitem__方法,因为这个方法会被DataLoader调用,在该方法中对语句进行向量化。

模型训练

编写训练函数:

def train(
    data_iter: DataLoader,
    model: nn.Module,
    criterion: nn.CrossEntropyLoss,
    optimizer: torch.optim.Optimizer,
    grad_clipping: float,
) -> None:
    model.train()

    tqdm_iter = tqdm(data_iter)

    running_loss = 0.0

    for step, (x1, x2, _, _, y) in enumerate(tqdm_iter):
        x1 = x1.to(device).long()
        x2 = x2.to(device).long()
        y = torch.LongTensor(y).to(device)

        output = model(x1, x2)

        loss = criterion(output, y)
        running_loss += loss.item()

        optimizer.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clipping)

        optimizer.step()

        description = f" TRAIN iter={step+1} loss={running_loss / (step + 1):.6f}"
        tqdm_iter.set_description(description)

和之前代码的区别在于,增加了梯度裁剪和动态设置tqdm的描述,使打印信息更精炼。

定义模型:

model = MatchPyramid(args)

early_stopper = EarlyStopper(mode="max")

if args.load_embeding and os.path.exists(args.embedding_saved_path):
    model.embedding.load_state_dict(torch.load(args.embedding_saved_path))
    print("loading saved embedding")
elif args.load_embeding and os.path.exists(args.embedding_pretrained_path):
    wv = KeyedVectors.load_word2vec_format(args.embedding_pretrained_path)

    embeddings = load_embedings(vocab, wv)

    model.embedding.load_state_dict({"weight": torch.tensor(embeddings)})

    torch.save(model.embedding.state_dict(), args.embedding_saved_path)
    print("loading pretrained embedding")
else:
    print("init embedding from stratch")

定义模型支持加载预训练好的word2vec向量,以及保存加载好的嵌入向量方便下次直接使用。

同时支持早停策略:

class EarlyStopper:
    def __init__(self, patience: int = 5, mode: str = "min") -> None:
        self.patience = patience
        self.counter = 0
        self.best_value = 0.0
        if mode not in {"min", "max"}:
            raise ValueError(f"mode {mode} is unknown!")
        self.mode = mode

    def step(self, value: float) -> bool:
        if self.is_better(value):
            self.best_value = value
            self.counter = 0
        else:
            self.counter += 1
            if self.counter >= self.patience:
                return True

        return False

    def is_better(self, a: float) -> bool:
        if self.mode == "min":
            return a < self.best_value
        return a > self.best_value

比如如果连续5次的准确率都不再提升,直接退出训练循环,因此我们可以把训练迭代次数设高一点。

最后的训练循环如下:

optimizer = torch.optim.Adam(parameters, lr=args.learning_rate)
criterion = nn.CrossEntropyLoss()

lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="max", factor=0.85, patience=0)

best_value = 0.0

for epoch in range(args.num_epochs):
    train(
        train_data_loader,
        model,
        criterion,
        optimizer,
        args.grad_clipping
    )
    with torch.no_grad():
        acc, p, r, f1 = evaluate(dev_data_loader, model)
    lr_scheduler.step(acc)

    if acc > best_value:
        best_value = acc
        print(f"Save model with best acc :{acc}")
        torch.save(model.state_dict(), model_save_path)
        
	if early_stopper.step(acc):
       print(f"Stop from early stopping.")
       break

    print(
        f"EVALUATE [{epoch+1}/{args.num_epochs}]  accuracy={acc:.3f} precision={p:.3f} recal={r:.3f} f1 score={f1:.4f}"
    )

这里使用了ReduceLROnPlateau学习率调度器,当验证集的准确率不再提升时,就调整(减小)学习率。

python .\text_matching\match_pyramid\train.py
Arguments : Namespace(dataset_csv='text_matching/data/lcqmc/{}.txt', vectorizer_file='vectorizer.json', model_state_file='model.pth', pandas_file='dataframe.{}.pkl', save_dir='D:\\workspace\\nlp-in-action\\text_matching\\match_pyramid\\model_storage', reload_model=False, cuda=True, learning_rate=0.0005, batch_size=128, num_epochs=50, max_len=50, embedding_dim=300, embedding_saved_path='text_matching/data/embeddings.pt', embedding_pretrained_path='./word2vec.zh.300.char.model', load_embeding=False, fix_embeddings=False, hidden_size=150, out_channels=[8, 16], kernel_sizes=[(5, 5), (3, 3)], pool_sizes=[(10, 10), (5, 5)], dropout=0.2, min_freq=2, project_func='linear', grad_clipping=2.0, num_classes=2)
Using device: cuda:0.
Loads cached dataframes.
Loads vectorizer file.
init embedding from stratch
Model: MatchPyramid(
  (embedding): Embedding(4827, 300, padding_idx=0)
  (conv1): Conv2d(1, 8, kernel_size=(5, 5), stride=(1, 1))
  (conv2): Conv2d(8, 16, kernel_size=(3, 3), stride=(1, 1))
  (pool1): AdaptiveMaxPool2d(output_size=(10, 10))
  (pool2): AdaptiveMaxPool2d(output_size=(5, 5))
  (linear): Linear(in_features=400, out_features=150, bias=True)
  (prediction): Linear(in_features=150, out_features=2, bias=True)
)
New model
 TRAIN iter=1866 loss=0.507334: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [11:56<00:00,  2.60it/s] 
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.57it/s] 
Save model with best acc :0.642808
EVALUATE [1/50]  accuracy=0.643 precision=0.607 recal=0.811 f1 score=0.6944
 TRAIN iter=1866 loss=0.432987: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [11:56<00:00,  2.61it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.62it/s] 
Save model with best acc :0.651897
EVALUATE [2/50]  accuracy=0.652 precision=0.628 recal=0.748 f1 score=0.6824
 TRAIN iter=1866 loss=0.398575: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [11:44<00:00,  2.65it/s] 
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.75it/s] 
Save model with best acc :0.685526
EVALUATE [3/50]  accuracy=0.686 precision=0.667 recal=0.740 f1 score=0.7019
 TRAIN iter=1866 loss=0.369512: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [11:43<00:00,  2.65it/s] 
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.71it/s] 
Save model with best acc :0.697342
EVALUATE [4/50]  accuracy=0.697 precision=0.683 recal=0.736 f1 score=0.7086
 TRAIN iter=1866 loss=0.346564: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [12:42<00:00,  2.45it/s] 
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.76it/s] 
EVALUATE [5/50]  accuracy=0.694 precision=0.662 recal=0.793 f1 score=0.7215
 TRAIN iter=1866 loss=0.325961: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [11:43<00:00,  2.65it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.78it/s] 
Save model with best acc :0.719382
EVALUATE [6/50]  accuracy=0.719 precision=0.699 recal=0.772 f1 score=0.7334
 TRAIN iter=1866 loss=0.309486: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [11:43<00:00,  2.65it/s] 
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.67it/s] 
Save model with best acc :0.721654
EVALUATE [7/50]  accuracy=0.722 precision=0.717 recal=0.731 f1 score=0.7244
 TRAIN iter=1866 loss=0.294962: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [12:17<00:00,  2.53it/s] 
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.70it/s] 
EVALUATE [8/50]  accuracy=0.719 precision=0.701 recal=0.762 f1 score=0.7305
 TRAIN iter=1866 loss=0.280962: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [11:44<00:00,  2.65it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.65it/s] 
Save model with best acc :0.723018
EVALUATE [9/50]  accuracy=0.723 precision=0.702 recal=0.774 f1 score=0.7365
 TRAIN iter=1866 loss=0.269775: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [13:26<00:00,  2.31it/s] 
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.84it/s] 
Save model with best acc :0.724949
EVALUATE [10/50]  accuracy=0.725 precision=0.705 recal=0.775 f1 score=0.7381
 TRAIN iter=1866 loss=0.259390: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [11:43<00:00,  2.65it/s] 
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.72it/s] 
Save model with best acc :0.733810
EVALUATE [11/50]  accuracy=0.734 precision=0.718 recal=0.770 f1 score=0.7431
 TRAIN iter=1866 loss=0.248994: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [11:44<00:00,  2.65it/s] 
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.70it/s] 
EVALUATE [12/50]  accuracy=0.732 precision=0.702 recal=0.807 f1 score=0.7504
 TRAIN iter=1866 loss=0.238763: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [11:56<00:00,  2.60it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.75it/s] 
Save model with best acc :0.740854
EVALUATE [13/50]  accuracy=0.741 precision=0.726 recal=0.773 f1 score=0.7489
 TRAIN iter=1866 loss=0.230795: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [11:44<00:00,  2.65it/s] 
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.74it/s] 
Save model with best acc :0.741877
EVALUATE [14/50]  accuracy=0.742 precision=0.729 recal=0.769 f1 score=0.7488
 TRAIN iter=1866 loss=0.222789: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [11:44<00:00,  2.65it/s] 
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.67it/s] 
EVALUATE [15/50]  accuracy=0.741 precision=0.719 recal=0.791 f1 score=0.7531
 TRAIN iter=1866 loss=0.214246: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [12:18<00:00,  2.53it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.77it/s] 
EVALUATE [16/50]  accuracy=0.740 precision=0.722 recal=0.782 f1 score=0.7507
 TRAIN iter=1866 loss=0.207212: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [11:43<00:00,  2.65it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.75it/s] 
EVALUATE [17/50]  accuracy=0.737 precision=0.712 recal=0.794 f1 score=0.7512
 TRAIN iter=1866 loss=0.201221: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [12:07<00:00,  2.57it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.67it/s] 
Save model with best acc :0.750170
EVALUATE [18/50]  accuracy=0.750 precision=0.737 recal=0.779 f1 score=0.7571
 TRAIN iter=1866 loss=0.196648: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [11:43<00:00,  2.65it/s] 
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.77it/s] 
EVALUATE [19/50]  accuracy=0.741 precision=0.708 recal=0.819 f1 score=0.7594
 TRAIN iter=1866 loss=0.191739: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [11:44<00:00,  2.65it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.80it/s] 
EVALUATE [20/50]  accuracy=0.742 precision=0.723 recal=0.785 f1 score=0.7528
 TRAIN iter=1866 loss=0.187552: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [12:07<00:00,  2.56it/s] 
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.79it/s] 
EVALUATE [21/50]  accuracy=0.740 precision=0.724 recal=0.777 f1 score=0.7495
 TRAIN iter=1866 loss=0.183918: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [11:44<00:00,  2.65it/s] 
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.75it/s] 
EVALUATE [22/50]  accuracy=0.738 precision=0.717 recal=0.785 f1 score=0.7496
 TRAIN iter=1866 loss=0.180852: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [13:26<00:00,  2.31it/s] 
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:05<00:00, 11.71it/s] 
Stop from early stopping.
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 98/98 [00:08<00:00, 11.87it/s] 
TEST accuracy=0.757 precision=0.702 recal=0.894 f1 score=0.7865
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 98/98 [00:08<00:00, 11.90it/s] 
TEST[best score] accuracy=0.765 precision=0.717 recal=0.876 f1 score=0.7883

触发了早停。
最终达到了76.5%的测试集准确率。

完整代码

https://github.com/nlp-greyfoss/nlp-in-action-public/tree/master/text_matching

你可能感兴趣的:(NLP项目实战,#,文本匹配实战,MatchPyramid)