ControlNet通过引入可训练的控制模块,将外部条件信号融入预训练生成模型。其核心数学表达为:
F o u t = F b a s e ( z ) + α ⋅ F c o n t r o l ( c ) \mathcal{F}_{out} = \mathcal{F}_{base}(z) + \alpha \cdot \mathcal{F}_{control}(c) Fout=Fbase(z)+α⋅Fcontrol(c)
其中:
创新性提出Zero Convolution结构,解决训练初期破坏预训练模型知识的问题:
class ZeroConv2d(nn.Module):
def __init__(self, in_ch, out_ch):
super().__init__()
self.conv = nn.Conv2d(in_ch, out_ch, 1)
self.conv.weight.data.zero_() # 权重初始化为零
self.conv.bias.data.zero_() # 偏置初始化为零
def forward(self, x):
return self.conv(x)
支持多种控制条件的融合处理:
class MultiControlNet(nn.Module):
def __init__(self, controls):
super().__init__()
self.controls = nn.ModuleList(controls)
def forward(self, x, conditions):
controls = []
for cond, net in zip(conditions, self.controls):
controls.append(net(cond))
return torch.cat(controls, dim=1)
指标 | 原始SD模型 | ControlNet | 提升幅度 |
---|---|---|---|
形状匹配准确率 | 62% | 93% | +50% |
细节保留度(SSIM) | 0.78 | 0.92 | +18% |
推理速度(it/s) | 2.4 | 2.1 | -12% |
conda create -n controlnet python=3.9
conda activate controlnet
pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118
git clone https://github.com/lllyasviel/ControlNet
cd ControlNet/models
wget https://huggingface.co/lllyasviel/ControlNet/resolve/main/models/control_sd15_canny.pth
from controlnet import ControlNetModel
from diffusers import StableDiffusionControlNetPipeline
# 初始化模型
controlnet = ControlNetModel.from_pretrained("control_sd15_canny")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet
).to("cuda")
# 生成控制条件(Canny边缘检测)
from controlnet_aux import CannyDetector
canny_detector = CannyDetector()
control_image = canny_detector("input.jpg", low_threshold=100, high_threshold=200)
# 生成图像
image = pipe(
prompt="a futuristic city",
image=control_image,
num_inference_steps=20,
guidance_scale=7.5
).images[0]
# 多条件融合示例
controlnet = MultiControlNet([
ControlNetModel.from_pretrained("control_sd15_canny"),
ControlNetModel.from_pretrained("control_sd15_depth")
])
# 生成参数调节
image = pipe(
...,
controlnet_conditioning_scale=[1.0, 0.8], # 多条件权重
guess_mode=True, # 自动条件推测
cross_attention_kwargs={"scale": 0.5} # 控制强度
)
# 检查条件图像预处理
control_image = processor(
raw_image,
detect_resolution=512, # 匹配模型输入尺寸
image_resolution=768
)
# 调整控制强度
result = pipe(..., controlnet_conditioning_scale=1.2)
# 启用内存优化
pipe.enable_model_cpu_offload()
pipe.enable_xformers_memory_efficient_attention()
# 分块处理
pipe.controlnet.config.sample_size = 64 # 降低处理分辨率
# 优化采样策略
from diffusers import UniPCMultistepScheduler
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# 增加去噪步骤
image = pipe(..., num_inference_steps=50, denoising_start=0.3)
控制信号注入过程可表示为:
ϵ θ ( z t , t , c ) = ϵ θ b a s e ( z t , t ) + ∑ i = 1 N w i ⋅ ϵ θ c o n t r o l i ( z t , t , c i ) \epsilon_\theta(z_t, t, c) = \epsilon_\theta^{base}(z_t, t) + \sum_{i=1}^N w_i \cdot \epsilon_\theta^{control_i}(z_t, t, c_i) ϵθ(zt,t,c)=ϵθbase(zt,t)+i=1∑Nwi⋅ϵθcontroli(zt,t,ci)
其中 w i w_i wi为各控制条件的权重系数。
ControlNet原始论文
Zhang L, et al. Adding Conditional Control to Text-to-Image Diffusion Models
稳定扩散基础
Rombach R, et al. High-Resolution Image Synthesis with Latent Diffusion Models
条件扩散模型
Dhariwal P, et al. Diffusion Models Beat GANs on Image Synthesis
class CustomControlNet(ControlNetModel):
def __init__(self):
super().__init__()
self.blocks = nn.ModuleList([
ResnetBlock2D(320, 640),
AttentionBlock(640),
ResnetBlock2D(640, 1280)
])
def forward(self, x, timestep, context):
for block in self.blocks:
x = block(x, timestep, context)
return x
from controlnet_animation import ControlNetAnimator
animator = ControlNetAnimator(
base_model=pipe,
controlnet_types=["depth", "canny"],
interpolation_steps=30
)
video_frames = animator.generate(
prompt="A rotating spaceship",
control_sequence=[frame1, frame2, frame3],
output_length=5 # 秒
)
quantized_controlnet = torch.quantization.quantize_dynamic(
controlnet,
{nn.Conv2d},
dtype=torch.qint8
)
pipe.controlnet = quantized_controlnet
pipe.unet = torch.compile(pipe.unet)
pipe.controlnet = torch.compile(pipe.controlnet)
ControlNet通过创新的条件控制机制,为生成模型提供了前所未有的精确控制能力。其零卷积初始化、模块化设计等关键技术突破,为计算机视觉领域的研究与应用开辟了新的可能性。随着硬件算力的提升和算法的持续优化,该框架有望成为下一代智能内容生成的核心基础设施。