- 2025年入局苹果Vision Pro开发:从零到发布的完整路线图
花生糖@
苹果眼镜(Visionapplevisionpro
苹果VisionPro的发布标志着空间计算(SpatialComputing)进入主流市场。作为开发者,如何快速掌握visionOS开发?本文将为你提供详细的路线图、实践建议与资源指南,涵盖从窗口式应用到沉浸式3D应用的完整开发路径。一、visionOS开发的核心目标与阶段划分visionOS的开发可分为两个阶段:Window-Based(窗口式)应用开发学习Swift与SwiftUI,构建基础U
- C++实战:数据标准化高效实现
DBSCAN基本DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)是一种基于密度的聚类算法,适用于发现任意形状的簇并识别噪声点。核心参数包括:eps:邻域半径,决定样本的邻域范围。min_samples:核心点所需的最小邻域样本数。Python实现步骤安装依赖库pipinstallnumpymatplotlibscikit-l
- Redis常用数据类型和它们的底层数据结构
Redis常用数据类型有8种:String、Hash、List、Set、Zset、HyperLogLog、Bitmap和Geospatial,其中前面5种是最常用的。1、String(字符串)String是最基本的数据类型,每个键对应一个值,可以是文本、数字、二进制数据等。底层数据结构:使用SDS(SimpleDynamicString,简单动态字符串);解决了C语言字符串(以空字符\0结尾)的不
- 旋转目标检测:Deep Spatial Feature Transformation for Oriented Aerial Object Detection【方法解析】
沉浸式AI
《AI与SLAM论文解析》人工智能计算机视觉旋转目标检测
DeepSpatialFeatureTransformationforOrientedAerialObjectDetection目录DeepSpatialFeatureTransformationforOrientedAerialObjectDetection摘要关键词引言相关工作旋转对齐模块特征对齐方法旋转对齐模块特征选择模块摘要航空图像中的目标检测在计算机视觉领域引起了广泛关注。不同于自然图像
- Unity XR Interaction Toolkit 开发教程(1):OpenXR 与 XRI 概述【3.0 以上版本】
文章目录UnityXR开发架构底层插件(对接硬件)高层SDK(面向应用交互层)OpenXRXRInteractionToolkit特点XRI能够实现的交互类型XR交互参与的对象XRI中与交互相关的状态SpatialXR开发者社区官网:https://www.spatialxr.tech/视频试看链接:https://www.bilibili.com/video/BV14pSbYsEPz系列教程专栏
- 修改Spatial-MLLM项目,使其专注于无人机航拍视频的空间理解
神经网络15044
python神经网络算法无人机音视频机器学习人工智能算法架构
修改Spatial-MLLM项目,使其专注于无人机航拍视频的空间理解。以下是修改方案和关键代码实现:修改思路输入处理:将原项目的视频+文本输入改为单一无人机航拍视频/图像输入问题生成:自动生成空间理解相关的问题(无需用户输入文本)模型适配:调整视觉编码器处理航拍图像特征输出优化:聚焦空间关系、物体定位和场景结构的分析关键代码修改1.输入处理模块(video_processor.py)importc
- 【字节跳动】数据挖掘面试题0001:打车场景下POI与ODR空间关联查询
言析数智
数据挖掘常见面试题数据挖掘人工智能面试题
题目描述打车的场景下,poi记录了建筑物的坐标:poi(pid,x,y),odr记录的是乘客上车点的坐标:odr(oid,x,y);希望对所有的poi,获得其周围的100m的odr:结果(pid,oid)打车场景下POI与ODR空间关联查询在打车场景中,我们经常需要将建筑物坐标(POI)与乘客上车点(ODR)进行空间关联分析。这个问题本质上是一个空间连接(SpatialJoin)问题,需要找到距离
- YOLOv12_ultralytics-8.3.145部分代码阅读笔记-utils.py
红色的山茶花
YOLO笔记深度学习
utils.pyultralytics\nn\modules\utils.py目录utils.py1.所需的库和模块2.def_get_clones(module,n):3.definverse_sigmoid(x,eps=1e-5):4.defmulti_scale_deformable_attn_pytorch(value:torch.Tensor,value_spatial_shapes:t
- 群核科技空间理解模型SpatialLM技术报告发布,3D空间识别精度达全球领先水平
CSDN资讯
科技3d
近日,空间理解模型SpatialLM发布首份技术报告,该模型来自于空间智能公司群核科技。据悉,该模型于今年3月正式开源,并在开源后迅速与DeepSeek-V3、Qwen2.5-Omni一起登上全球最大的开源社区HuggingFace全球趋势榜前三。图说:来自杭州的三个大模型共同登榜HuggingFace全球趋势榜前三作为一款将大语言模型扩展到3D空间理解任务中的模型,SpatialLM能从3D点云
- 当AI拥有空间直觉:SpatialLM如何让机器“看懂”三维世界?
遇见小码
AI棱镜实验室人工智能开源
开源地址:https://huggingface.co/manycore-research/SpatialLM-Llama-1B你是否想象过,只需用手机拍一段视频,AI就能像人类一样理解房间的布局、家具的位置,甚至预测柜门打开的方向?这正是群核科技开源的SpatialLM所实现的能力——它让机器第一次拥有了“空间直觉”,能够从普通视频中解析物理世界的三维逻辑,成为机器人、自动驾驶等领域的“空间翻译
- Flink SQL 解析器与 Calcite 在大数据处理中的应用
JieLun_C
flinksql大数据
FlinkSQL解析器与Calcite在大数据处理中的应用在大数据处理领域中,FlinkSQL解析器与Calcite是两个重要的组件,它们在解析和优化FlinkSQL查询方面发挥着关键作用。本文将介绍FlinkSQL解析器和Calcite的基本概念,并给出一些示例代码,以帮助读者更好地理解它们的用途和工作原理。FlinkSQL解析器FlinkSQL解析器是Flink提供的一个模块,用于将SQL查询
- 空间转录组benchmark 相关 读完scGPT spatial 和 空间单细胞基因乳房细胞数据集文章之后
victory0431
人工智能
文章目录✅空间转录组测序方式总体划分成像型空间转录组(Imaging-basedST)原理:技术代表&特点:优点:局限:测序型空间转录组(Sequencing-basedST)原理:技术代表&特点:优点:局限:成像型vs测序型空间转录组对比表✅回到你问的SpatialHuman30M构建策略理解:总结你的问题:✅①**NeighborhoodEnrichmentAnalysis:空间邻近富集分析*
- YOLOv10改进策略【Neck】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度
Limiiiing
YOLOv10改进专栏YOLO目标检测计算机视觉深度学习
一、本文介绍本文主要利用MSA2NetMSA^{2}NetMSA2Net中的MASAG模块优化YOLOv10的目标检测网络模型。MASAG(Multi-ScaleAdaptiveSpatialAttentionGate)模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于YOLOv10的改进过程中,针对目标
- YOLOv12改进策略【Neck】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度
Limiiiing
YOLOv12改进专栏YOLO目标检测计算机视觉深度学习
一、本文介绍本文主要利用MSA2NetMSA^{2}NetMSA2Net中的MASAG模块优化YOLOv12的目标检测网络模型。MASAG(Multi-ScaleAdaptiveSpatialAttentionGate)模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于YOLOv12的改进过程中,针对目标
- 社交机器人具身导航新范式!AutoSpatial:通过高效空间推理学习实现机器人视觉语言推理和社交导航
视觉语言导航
具身智能机器人人工智能具身智能
作者:YangzheKong,DaeunSong,JingLiang,DineshManocha,ZiyuYao,andXuesuXiao单位:乔治梅森大学,马里兰大学论文标题:AutoSpatial:Visual-LanguageReasoningforSocialRobotNavigationthroughEfficientSpatialReasoningLearning论文链接:https:
- 19 - SAFM模块
Leo Chaw
深度学习算法实现深度学习计算机视觉机器学习
论文《Spatially-AdaptiveFeatureModulationforEfficientImageSuper-Resolution》1、作用这篇论文通过提出空间自适应特征调制(Spatially-AdaptiveFeatureModulation,SAFM)机制,旨在解决图像超分辨率(Super-Resolution,SR)的高效设计问题。在图像超分辨率重建性能上取得了显著的成果,这些
- nnUNet V2代码——图像增强(一)
w1ndfly
图像增强阅读nnUNetV2代码计算机视觉机器学习深度学习人工智能nnunetnnU-NetV2nnUNet
本文目录nnUNetV2使用的图像增强方法各个图像增强代码1.BasicTransform2.SpatialTransform__init__函数get_parameters函数_apply_to_image函数_apply_to_segmentation函数其余函数nnUNetV2使用的图像增强方法nnUNetV2会依照概率依次对图像应用以下图像增强方法:代码-类名对应图像增强方法Spatial
- 达梦 空间数据库扩展记录
山人在山上
达梦数据库GIS
重点申请试用需要提前告知达梦需要GIS的扩展,他们才会提供,默认是不含有空间数据支持的。官方会提供一个xxxxspatial.zip的一个包1、windows正常安装dm数据库2、安装成功后停止程序3、将xxxxspatial.zip解压后得到spatial文件夹4、将文件夹拷贝到安装路径的bin目录下5、重启服务6、执行SP_INIT_GEO_SYS(1)7、验证SELECTSF_CHECK_G
- 【数据分享】截至到2023年的长三角四省养老机构空间分布数据(近30个指标)
小鲨鱼-立方数据学社
数据分享立方数据学社养老机构
养老机构作为提供养老服务的关键角色,其在不同地区和时间上的分布模式至关重要。这种分布模式与“良好健康与福祉”以及“可持续城市与社区”的实现紧密相连,直接影响到我们能否让人们拥有更健康、更幸福的生活,同时也影响着我们能否构建更宜居、更可持续发展的城市和社区。今日我们分享的是截至2023年的中国长三角地区养老机构空间分布数据。该数据集名为Aspatialdistributionofelderlyins
- YOLOv11 | 注意力机制篇 | 可变形大核注意力Deformable-LKA与C2PSA机制
wei子
技术杂谈YOLO目标跟踪人工智能
YOLOv11|注意力机制篇|可变形大核注意力Deformable-LKA与C2PSA机制引言在目标检测领域,如何有效处理不规则形状和复杂空间变换的目标是关键挑战。本文提出将可变形大核注意力Deformable-LKA与创新的C2PSA(Cross-ChannelPosition-awareSpatialAttention)相结合,为YOLOv11带来显著性能提升。实验表明,该组合在COCO数据集
- seurat v5更新及样本整合方法
感性逻辑
单细胞学习数据库mysql
目录seuratv5的去批次方式①pbmc单细胞数据②SeuratV5多种去批次进行合并分组数据进行去批次CCA降维harmony降维Analysis,visualization,andintegrationofVisiumHDspatialdatasetswithSeurat•Seurat(satijalab.org)ToolsforSingleCellGenomics•Seurat(satij
- Redis 中常见的数据类型有哪些?
篱笆院的狗
春招热门面试题redis数据库缓存
Redis常见的数据类型包括5种基础类型(String、Hash、List、Set、Zset)和3种特殊类型(HyperLogLog、Bitmap、Geospatial)。以下是详细说明:一、5种基础数据类型1.字符串(String)特点:二进制安全,可存储任意格式数据(如文本、JSON、图片二进制流)。支持原子性操作(如INCR/DECR计数器)。最大容量为512MB。应用场景:缓存简单键值对(
- PostGIS实现叠加分析之-Union
gerrywhu
PostGIS矢量数据处理分析Postgis叠加分析UnionGIS
1.GIS中的叠加分析包括6个,arcgis中可以看出:包括,Erase,Identity,Intersect,SpatialJoin,Symmetricaldifference,Union,Update。具体可参考Arcgis的帮助文档,网上也能找一堆。参考:https://wenku.baidu.com/view/26c40a7ca8956bec0975e37e.html2.其中,Union的
- 【Python库安装】Python环境安装GDAL库
WW、forever
Python基础处理PythonGDAL
Python环境安装GDAL库1GDAL介绍GDAL的应用python安装GDAL库Python版本查看与切换方法1:pip直接安装另:下载.whl文件安装报错-Python安装库文件isnotasupportedwheelonthisplatform的解决方案方法2:离线安装,使用whl文件安装方法3:使用conda安装wrf-python:参考1GDAL介绍GDAL(GeospatialDat
- 探秘空间基因表达的 “地形图”:GASTON 算法重磅来袭!
阔跃生物
阔跃云阔跃AI阔跃生物算法阔跃生物阔跃云阔跃AI人工智能
在生命科学的浩瀚宇宙中,空间基因表达模式的解析一直是科研人员苦苦追寻的目标。近期,一篇发表于《NatureMethods》的重磅研究《Mappingthetopographyofspatialgeneexpressionwithinterpretabledeeplearning》为我们点亮了新的希望。该研究由PrincetonUniversity的BenjaminJ.Raphael团队主导,历
- 论文研读 | 解耦动态时空图神经网络交通预测
时空大数据小组
深度学习交通物流时序数据库
DecoupledDynamicSpatial-TemporalGraphNeuralNetworkforTrafficForecasting本文是由中科院大学2022年发表于VLDB会议的一篇文章,作者创新地提出了一种解耦时空框架——DSTF,提升了模型在交通流预测任务中的性能,并在两个真实数据集上进行了验证。作者通过将先验知识融合进模型结构中,从而提升模型性能的思路值得借鉴,以下对论文进行分享
- 【时空图神经网络 & 交通】相关模型2:STSGCN | 时空同步图卷积网络 | 空间相关性,时间相关性,空间-时间异质性
追光者♂
百题千解计划(项目实战案例)STSGCN空间-时间同步图卷积模块STSGCM深度学习人工智能Traffic空间-时间异质性
注:仅学习使用~前情提要:【时空图神经网络&交通】相关模型1:STGCN|完全卷积结构,高效的图卷积近似,瓶颈策略|时间门控卷积层:GLU(GatedLinearUnit),一种特殊的非线性门控单元目录STSGCN-2020年1.1背景1.2模型1.2.1问题背景:现有模型存在的问题1.2.2模型1.3问答Q1:STSGCM补充:构造局部时空图的方式(LocalizedSpatial-Tempor
- 空间智能 | 介绍
AI风老师
空间智能空间计算人工智能
定义空间智能并不是一个多新的概念,它作为人类智能的一个重要组成部分,早在1905年就受到关注。当时因对机械能力和操作能力的研究而受到启发,美国心理学家HowardGardner教授第一次明确提出了“空间智能”的概念。空间智能(SpatialIntelligence)已成为人工智能领域的一个前沿方向,它通过整合多种技术,使AI系统具备在三维空间中感知、认知和交互的能力。空间智能通常指能够观察、理解三
- 探索PyTorch中的空间与通道双重注意力机制:实现concise的scSE模块
RockLiu@805
深度学习模块机器视觉pytorch人工智能python
探索PyTorch中的空间与通道双重注意力机制:实现concise的scSE模块在深度学习领域,尤其是在计算机视觉任务中,特征图的注意力机制变得越来越重要。近期,我在研究一种结合了通道和空间两种注意力机制的模块——ConciseSpatialandChannelSqueeze&Excitation(scSE)。这种模块不仅考虑到了通道间的相互关系,还引入了空间上的注意力机制,为模型提供了更丰富的特
- YOLOv5中的SPPF模块的详细解释(合适新人)
资源补给站
YOLOv5图像处理pythonYOLO目标跟踪人工智能
这个主要是对YOLOv5中的SPPF模块的详细解释,希望对您有所帮助。有需要学习相关资料等也可以一起交流,附上学习交流群QQ:1072432415YOLOv5中的SPPF(SpatialPyramidPoolingFast)模块是一种改进型的空间金字塔池化技术,它用于多尺度特征提取,以增强模型对不同尺寸目标的检测能力。以下是对SPPF模块的详细解析:SPPF模块的原理:SPPF模块的核心思想是通过
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo