- 英伟达靠什么支撑起了4万亿?AI泡沫还能撑多久?
英伟达市值突破4万亿美元,既是AI算力需求爆发的直接体现,也暗含市场对未来的狂热预期。其支撑逻辑与潜在风险并存,而AI泡沫的可持续性则取决于技术、商业与地缘政治的复杂博弈。⚙️一、英伟达4万亿市值的核心支撑因素技术垄断与生态壁垒硬件优势:英伟达GPU在AI训练市场占有率超87%,H100芯片的FP16算力达1979TFLOPS,领先竞品3-5倍。CUDA生态:400万开发者构建的软件护城河,成为A
- 【C++算法】76.优先级队列_前 K 个高频单词
流星白龙
优选算法C++c++算法开发语言
文章目录题目链接:题目描述:解法C++算法代码:题目链接:692.前K个高频单词题目描述:解法利用堆来解决TopK问题预处理一下原始的字符串数组,用一个哈希表统计一下每一个单词出现的频次。创建一个大小为k的堆频次:小根堆字典序(频次相同的时候):大根堆循环让元素依次进堆判断提取结果C++算法代码:classSolution{//定义类型别名,PSI表示对typedefpairPSI;//自定义比较
- 【ARM】FPU,VFP,ASE,NEON,SVE...是什么意思?
亿道电子Emdoor
ARMarm开发ARM
1、文档目标对执行浮点和SIMD操作的逻辑的各种名称的缩写词进行简要解释。2、问题场景Arm处理器内核中有用于执行浮点和SIMD操作的逻辑,有各种名称。它们通常是一系列的缩写形式,因此本文旨在对每一个缩写词进行简要解释。3、软硬件环境1、软件版本:不涉及2、电脑环境:不涉及4、相关缩写FPU(Floating-PointUnit)浮点单元浮点单元是处理器核心中的一个模块,用于使用浮点数执行算术运算
- 大模型量化终极对决:FP8 vs AWQ INT4,谁才是性能与精度的王者?
曦紫沐
大模型人工智能大模型量化FP8AWQ_INT4
摘要在大模型部署与优化中,量化技术是突破性能瓶颈的关键。FP8量化与AWQINT4量化作为当前主流方案,分别以“高精度”和“极致压缩”为核心优势。本文通过表格对比二者的数据格式、精度损失、硬件依赖及适用场景,助您在不同需求下精准选择最优方案。一、数据格式:浮点与整数的底层差异FP8量化采用浮点数(FP8),包含E4M3(4位阶码+3位尾数)和E5M2(5位阶码+2位尾数)两种格式,保留动态范围;而
- 19.0-《超越感觉》-说服他人
SAM52
Becausethoughtfuljudgmentsdeservetobeshared,andthewaytheyarepresentedcanstronglyinfluencethewayothersreacttothem.因为经过深思熟虑的判断值得分享,而这些判断的呈现方式会强烈影响其他人对它们的反应。Bylearningtheprinciplesofpersuasionandapplying
- 相机ROI 参数
ZPC8210
视觉数码相机
相机的ROI(RegionofInterest,感兴趣区域)参数,是指通过设置图像传感器上特定区域作为有效成像区域,从而只采集该区域的图像数据,而忽略其他部分。这一功能常用于工业相机、科研相机、高速相机等场景,以提升帧率、降低数据量或实现特定区域的精细分析。ROI参数的核心要点作用提高帧率:减少处理的像素数量,降低数据带宽,使相机能以更高速度采集图像(例如:从30fps提升到100fps)。减少数
- 模型压缩中的四大核心技术 —— 量化、剪枝、知识蒸馏和二值化
由数入道
人工智能剪枝人工智能算法模型压缩量化知识蒸馏二值化
一、量化(Quantization)量化的目标在于将原始以32位浮点数表示的模型参数和中间激活,转换为低精度(如FP16、INT8、甚至更低位宽)的数值表示,从而在减少模型存储占用和内存带宽的同时,加速推理运算,特别适用于移动、嵌入式和边缘计算场景。1.1概念与目标基本思想将高精度数值离散化为低精度表示。例如,将FP32权重转换为INT8,可降低内存需求约4倍,同时在支持低精度运算的硬件上加速计算
- 解决:FFmpeg推流时报错:Broken Pipe
-米兰的小铁匠
ffmpegpython
最初利用如下代码进行FFmpeg推流:importsubprocessimportcv2importnumpyasnpimporttimeclassRTMPStreamer:def__init__(self,rtmp_url,width,height,fps=30):self.rtmp_url=rtmp_urlself.width=widthself.height=heightself.fps=f
- GAMES202——作业1 实时阴影(ShadowMap,PCF,PCSS)
目录任务ShadowMapPCFPCSS实现ShadowMapuseShadowMapPCFfindBlockerPCSS结果任务ShadowMap1.在ShadowMaterial.js中需要向Shader传递正确的uLightMVP矩阵,该矩阵参与了第一步从光源处渲染场景从而构造ShadowMap的过程。你需要完成DirectionalLight中的CalcLightMVP(translate
- 【YOLO系列】YOLOv1详解:模型结构、损失函数、训练方法及代码实现
一碗白开水一
yolo系列助你拿捏AI算法YOLO人工智能目标检测计算机视觉
YOLOv1(YouOnlyLookOnce):实时目标检测的革命性突破✨motivation在目标检测领域,传统方法如R-CNN系列存在计算冗余、推理速度慢的问题。2016年提出的YOLO(YouOnlyLookOnce)首次实现端到端单阶段检测,将检测速度提升至45FPS(FasterR-CNN仅7FPS),彻底改变了实时目标检测的格局。其核心思想是将检测视为回归问题,实现"看一眼即知全貌"的
- 【YOLO系列】YOLOv4详解:模型结构、损失函数、训练方法及代码实现
一碗白开水一
yolo系列助你拿捏AI算法YOLO目标跟踪人工智能目标检测计算机视觉论文阅读
YOLOv4详解:模型结构、损失函数、训练方法及代码实现motivationYOLO系列作者JosephRedmon与AlexeyBochkovskiy致力于解决目标检测领域的核心矛盾:精度与速度的平衡。YOLOv4的诞生源于两大需求:工业落地:在移动端/边缘设备实现实时检测(>30FPS)学术突破:无需昂贵算力(如1080Ti即可训练),在MSCOCO数据集达到SOTAmethods1.数据加载
- 再谈fpga开发(fpga运行效率高的三大原因)
嵌入式-老费
再谈FPGA开发fpga开发
【声明:版权所有,欢迎转载,请勿用于商业用途。联系信箱:
[email protected]】fpga其实大家都不陌生,大家都知道fpga介于软件和硬件之间,适合处理底层信号的东西,运算速度比较快。知道多一点的同学,可能还知道fpga可以同时处理多个数据。再多一点的东西,可能就不清楚了。fpga本身频率不高,200M都算是很高的频率了。因此,毋庸置疑,fpga的效率就是在于它的并发性,这可以很大
- FPGA开发与测试流程详解
IC与FPGA设计
FPGAfpga开发
在FPGA(现场可编程门阵列)行业中,开发和测试是确保产品性能和稳定性的关键环节。FPGA技术广泛应用于通信、汽车、工业、消费电子等领域,其优势在于高效的并行处理能力和灵活的硬件定制能力。本文将详细介绍FPGA开发和测试的基本流程,帮助大家了解如何高效完成FPGA的开发与验证。FPGA开发流程FPGA的开发通常分为以下几个主要阶段:1.需求分析与设计规格在开始FPGA开发之前,首先需要明确系统的需
- 离线环境下如何优雅地部署 Mentor Questa
CFAteam
EDA工具安装指南EDA服务器运维fpga开发
MentorQuesta(前称ModelSimSE)是SiemensEDA旗下的重要数字仿真平台,被广泛用于ASIC和FPGA的功能验证、测试平台搭建和UVM流程开发。相比SynopsysVCS和CadenceXcelium,Questa更注重仿真引擎的灵活性与图形交互性。但在实际部署中,很多客户面临着“无法联网”或“内网部署”场景,如:高校教学机房受网络限制企业设计环境为内网隔离区军工科研单位需
- FPGA知识基础之--在线调试工具
土包子=-=
FPGA学习fpga开发
文章目录前言一、定义二、特点三、功能3.1信号监控:3.2信号修改:3.3断点设置:3.4变量监视:3.5性能分析:3.6故障注入:四、主要的在线调试工具4.1Xilinx的VIO和ILA4.1.1介绍4.1.2配置步骤4.1.3使用场景4.1.4优势4.2Altera的In-SystemMemoryContentEditor4.2.1介绍4.2.2配置步骤4.2.3使用场景4.3QuartusI
- 深入解析MIPI C-PHY (四)C-PHY物理层对应的上层协议的深度解析
GateWorld
MIPICPHYMIPIMIPIDPHY高速接口
C-PHY物理层对应的上层协议的深度解析C-PHY上层协议全景图一、核心协议:CSI-2(CameraSerialInterface2)定位:图像传感器传输的行业金标准最新版本:CSI-2v4.0(2023)协作机制:C-PHY作为其物理层承载1.核心技术创新(C-PHY+CSI-2)技术痛点传统D-PHY方案C-PHY+CSI-2方案高分辨率带宽4K@60fps需8对数据线4K@120fps仅需
- FPGA 基于 Vivado 核的 ROM 设计与实现
鱼弦
单片机系统合集fpga开发
FPGA基于Vivado核的ROM设计与实现介绍ROM(只读存储器)是一种非易失性存储器,可以在FPGA中用于存储固定数据或程序代码。在FPGA设计中,ROM通常用于初始化数据表、查找表(LUT)、固件和配置参数等。Vivado提供了便捷的IP核,可以快速实现和集成ROM模块。应用使用场景启动加载:存储系统启动时所需的引导代码或配置。查找表(LUT):用于快速计算复杂函数值,如三角函数、对数等。固
- 俄罗斯方块游戏开发(面向对象编程)
佩爷0107
MATLAB俄罗斯方块游戏旋转矩阵
摘要本设计基于MATLAB面向对象编程技术,开发了一款具备完整游戏逻辑的俄罗斯方块游戏。通过类封装实现游戏核心模块(方块管理、游戏板状态、碰撞检测等),采用旋转矩阵实现方块变形,结合MATLAB图形用户界面(GUI)完成交互设计。测试表明,系统在MATLABR2024a环境下运行稳定,帧率达30FPS,方块旋转响应时间小于0.1秒,消行判定准确率100%,符合经典俄罗斯方块游戏规范。1.引言1.1
- 路口实时检测 30FPS+:陌讯抗遮挡算法实测
2501_92488070
算法计算机视觉视觉检测边缘计算智慧城市
开篇痛点:复杂路口的视觉识别困境在城市交通治理中,行人闯红灯行为检测一直是智能监控的难点。传统视觉算法在实际部署中常面临三重挑战:强光/逆光环境下目标特征丢失导致的漏检率超20%;行人与非机动车遮挡场景下误判率高达15%;普通GPU设备上难以维持25FPS以上的实时性[3]。某二线城市交管部门曾反馈,基于开源模型的系统每月产生超3000条无效告警,严重消耗人力核查资源。这些问题的核心在于传统单模态
- 破解电梯场景难题:陌讯识别算法 mAP 达 98.7%
2501_92474790
算法计算机视觉目标检测智慧城市目标跟踪
开篇痛点:电梯间电动车识别的行业困局传统视觉算法在电梯间电动车检测场景中始终面临三重挑战:复杂光线环境下(如强光直射、夜间低照度)目标特征提取不稳定,电动车与婴儿车、行李箱等相似物体的误判率高达35%;电梯轿厢狭小空间导致目标畸变严重,小目标检测漏检率超过20%;普通模型在边缘设备部署时难以兼顾精度与速度,FPS普遍低于15帧[实测数据显示]。这些问题直接导致物业安防系统告警泛滥,真正的安全隐患却
- 实时检测延迟超200ms?陌讯新框架FPS提速50%揭晓
2501_92474779
目标跟踪人工智能计算机视觉机器学习算法视觉检测
开篇痛点在现代安防监控场景中,实时目标检测(Real-timeObjectDetection)至关重要,但传统算法如FasterR-CNN或YOLOv5往往面临严峻挑战。实测数据显示:复杂环境下(如夜间低光照、人群密集区),漏检率(MissRate)高达15-20%,导致安全隐患;同时,检测延迟(Latency)常超过200ms,影响应急响应。例如,某城市交通监控系统报告,在雨雾天气中的车辆误报率
- 项目部署的常用进程管理命令
FesonX
封面在实际的项目部署中,最常用的系统环境还是Linux,熟悉常用的管理命令,特别是进程管理命令(项目在系统中也以进程形式存在)很有必要.今天的命令包括:查看进程列表查看进程具体信息向进程发送信号查看进程打开的文件查看文件的使用情况查看端口占用列表查看具体端口占用查看进程命令psps-efpsaux上面两个命令没啥大区别,都支持grep筛选,如果不加aux/-ef显示的是处于运行态的进程,加了显示所
- 智慧零售 AI 卡顿?陌讯轻量化方案 FPS 升 40%
2501_92722744
零售人工智能目标跟踪计算机视觉目标检测算法
一、开篇痛点:智慧零售视觉算法的三大行业困境在智慧零售场景中,传统视觉算法正面临着难以突破的技术瓶颈。自助结算台的商品误识别率常高达12%-18%,导致消费者频繁触发人工核验;复杂货架场景下,商品重叠、光照变化和包装相似性问题,使得目标检测漏检率超过20%;而边缘设备的算力限制,又让实时推理帧率(FPS)普遍低于25,无法满足流畅交互需求[1]。这些问题直接造成商超运营成本增加30%以上,严重制约
- 漏检率骤升20%的安防困局:陌讯动态剪枝技术如何破局
2501_92473199
人工智能机器学习算法目标检测计算机视觉视觉检测
1.开篇痛点:安防监控的夜间困局传统目标检测算法在复杂安防场景中面临三重挑战:光照敏感:低光环境下行人检测mAP暴跌至65%以下,夜间误报率高达40%目标遮挡:密集场景(如校园周界)漏检率超25%,某园区因货柜遮挡漏检损失超万元/次算力瓶颈:边缘设备(如JetsonXavier)运行YOLOv5仅12FPS,响应延迟>200ms某安防厂商反馈:40%误报率迫使每2小时人工复核,运维成本激增37%2
- 模块
骚X
Python模块(Module),是一个Python文件,以.py结尾,包含了Python对象定义和Python语句。defprint_func(par):print"Hello:",parreturn模块的引入1import语句import模块名导入模块importsupport现在可以调用模块里包含的函数了support.print_func("Runoob")2from...import语句
- 音视频流媒体开发【二十六】ffplay播放器-音频输出和音频重采样
AlanGe
音视频流媒体开发-目录7⾳频输出模块ffplay的⾳频输出通过SDL实现。⾳频输出的主要流程:打开SDL⾳频设备,设置参数启动SDL⾳频设备播放SDL⾳频回调函数读取数据,这个时候我们就要从FrameQueue读取frame填充回调函数提供的buffer空间。audio的输出在SDL下是被动的,即在开启SDL⾳频后,当SDL需要数据输出时则通过回调函数的⽅式告诉应⽤者需要传⼊多少数据,但这⾥存在⼀
- XCZU4EV-1FBVB900E Xilinx FPGA AMD Zynq UltraScale+ MPSoC EV(Embedded Vision)
XINVRY-FPGA
arm开发fpga开发fpga嵌入式硬件硬件工程计算机视觉硬件架构
XCZU4EV-1FBVB900EXCZU4EV‑2FBVB900E属于AMD(Xilinx)ZynqUltraScale+MPSoCEV(EmbeddedVision)系列,集成四核Arm®Cortex‑A53应用处理器、双核Cortex‑R5F实时处理器与Mali‑400MP2片上GPU,辅以强大的可编程逻辑和海量DSP引擎。该器件面向视频嵌入式视觉、网络通信、工业自动化和高级数据处理等对图形
- 高斯牛顿法与拟牛顿法详解:非线性优化两大核心算法
北辰alk
AI算法
文章目录一、引言:非线性优化问题概述二、高斯牛顿法详解2.1算法原理与推导2.2算法流程2.3代码实现2.4应用实例:曲线拟合2.5算法分析三、拟牛顿法详解3.1算法原理3.2常见变体3.2.1DFP方法3.2.2BFGS方法3.3算法流程3.4代码实现(BFGS)3.5应用实例:Rosenbrock函数优化3.6算法分析四、两种算法对比五、改进与变体5.1高斯牛顿法的改进5.1.1Levenbe
- 图像处理全栈指南:从传统算法到深度学习,再到FPGA移植
阿牛的药铺
图像算法区图像处理算法深度学习
图像处理全栈指南:从传统算法到深度学习,再到FPGA移植一、引言:图像处理是光学类产品的“大脑”光学类产品(可见光摄像头、红外热成像、光谱仪)的核心价值,在于将光信号转化为可理解的图像信息。而图像处理算法,就是解读这些信息的“大脑”——从传统的边缘检测到深度学习的目标识别,从实时降噪到高维光谱分割,每一步都决定了产品的性能(如分辨率、帧率、功耗)。对于算法移植工程师(科研助理1)岗位而言,需要掌握
- AGM FPGA与CPLD烧录说明
HIZYUAN
FPGA大讲堂海振远技术分享课堂stm32fpga/cpldarm
AGM的产品系列主要是CPLD和FPGA两种,FPGA目前容量是从6KLE~16KLE有多个型号,不同的系列,我们也开发有相应的开发板,方便首次使用的时候快速上手。以下分享一些AGM的知识点。AGM芯片-烧写文件类型:1、AG256/272/576系列:.prg为烧写文件,通过JTAG烧写;_download.prg为AGMDownloader专用编程器的烧写文件,用于批量快速烧写用;_SRAM.
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><