机器人强化学习——Comparing Task Simplifications to Learn Closed-Loop Object Picking Using DRL(2019 RAL)
1简介任务是reach、grasp、lift,比较了rewardshaping、curriculumlearning、迁移学习,并迁移到了真实机器人场景中。本文抓取的方法框架是QT-Opt。2方法相机位置:机械臂腕部,眼在手上。state:深度图像、机械手张开宽度action:xyz平移、z轴旋转(想对于当前末端位姿)、机械手动作(开/闭)。每步平移最大1cm,初始state:随机选择n个物体放置