- 用 K-means 算法实现水果分堆
wh_xia_jun
AI+医疗算法kmeans机器学习
先看运行效果:importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportKMeans#生成模拟数据(两个高斯分布的混合点集)np.random.seed(42)X1=np.random.randn(100,2)+np.array([2,2])#第一簇数据,中心在(2,2)X2=np.random.randn(100,2)
- 新能源汽车大数据画像:从零到一实现K-means用户分群
新能源汽车研发&测试入门指南
学习笔记新星杯+王者杯汽车大数据kmeans
基于大数据分析的新能源汽车画像研究全攻略:从原理到实战前言在"软件定义汽车"的时代浪潮下,新能源汽车正经历着从交通工具向智能移动终端的进化。本文将带你深入探索如何通过大数据技术构建精准的用户与产品画像,揭秘车企数字化转型的核心技术。全文涵盖完整的技术链路和实战案例,助你快速掌握这一前沿领域。关键词:新能源汽车;用户画像挖掘;大数据分析;K-means聚类目录一、大数据分析技术基石二、新能源汽车画像
- 机器学习宝典——第6章
爱看烟花的码农
机器学习人工智能
第6章:聚类算法(Clustering)你好,同学!欢迎来到无监督学习的世界。与监督学习不同,这里的我们没有“标准答案”(标签),我们的目标是在数据中发现隐藏的、内在的结构。聚类算法就是实现这一目标的核心工具,它试图将数据集中的样本划分为若干个不相交的子集,我们称之为“簇”(cluster)。本章我们将深入探讨三种最具代表性的聚类算法:K-均值(K-Means)、层次聚类(Hierarchical
- 《dlib库中的聚类》算法详解:从原理到实践
A小庞
算法算法聚类数据挖掘机器学习c++
一、dlib库与聚类算法的关联1.1dlib库的核心功能dlib是一个基于C++的机器学习和计算机视觉工具库,其聚类算法模块提供了多种高效的无监督学习工具。聚类算法在dlib中主要用于:数据分组:将相似的数据点划分为同一簇。特征分析:通过聚类结果发现数据潜在的结构。降维辅助:结合聚类结果进行特征选择或数据压缩。dlib支持的经典聚类算法包括K-Means和ChineseWhispers,适用于图像
- 【python数据分析】数据建模之Kmeans聚类
斑点鱼 SpotFish
python数据建模聚类python数据分析
K-means聚类:最常用的机器学习聚类算法,且为典型的基于距离的聚类算法。K均值:基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇以欧式距离作为相似度测度Kmeans聚类案例分析:make_blobs聚类数据生成器#导入模块from sklearn.cluster import KMeansfromsklearn.datasetsimportmake_blobs#创建数据x,y_tr
- 数据挖掘与机器学习 期末复习整理
无敌摸鱼高手
数据挖掘与机器学习数据挖掘机器学习人工智能期末复习知识总结
1.分类:–有类别标记信息,因此是一种监督学习–根据训练样本获得分类器,然后把每个数据归结到某个已知的类,进而也可以预测未来数据的归类。2.聚类:–无类别标记,因此是一种无监督学习–无类别标记样本,根据信息相似度原则进行聚类,通过聚类,人们能够识别密集的和稀疏的区域,因而发现全局的分布模式,以及数据属性之间的关系3.聚类方法:划分方法-(分割类型)K-均值K-Means顺序领导者方法基于模型的方法
- BIRCH、K-Means、KNN聚类算法实战:二维坐标空间聚类分析
闲书郎
本文还有配套的精品资源,点击获取简介:本项目深入探讨BIRCH、K-Means、K-Means++和K-NearestNeighbors(KNN)四种聚类算法在二维坐标空间中的应用与分析。通过Python代码实现,项目着重介绍算法的运行机制,以及它们在聚类任务中的效果和优缺点。测试集包含二维坐标数据,通过比较不同算法处理效果,学习者将加深对算法的理解,并为未来的数据分析工作打下基础。1.聚类算法在
- 突破K-means终极局限:ISODATA算法完全解读(附实战代码)
AI妈妈手把手
算法kmeans机器学习ISODATA聚类算法k-means
大家好!欢迎来到我的技术分享博客~在前期系列中,我们从K-means的随机初始化陷阱出发,逐步剖析了Canopy+K-means的粗筛优化、K-means++的概率采样和二分K-means的层次分裂。今天,迎来K-means家族的终极进化形态——ISODATA算法!它不仅解决初始点敏感和K值预设问题,更能动态分裂合并簇,彻底突破球形假设限制!K-means算法详解Canopy+K-means优化方
- 机器学习算法_聚类KMeans算法
TY-2025
机器学习机器学习算法聚类
一、聚类算法分析1.概念概念:根据样本之间的相似性,将样本划分到不同的类别中;不同的相似度的计算方法,会得到不同的聚类结果,常见的相似度计算方法有欧氏距离法(无监督算法)聚类算法的目的是在没有先验知识的情况下,自动发现数据集中的内在结构和模式2.聚类算法分类(1)根据聚类颗粒度分类个数比较多的,细聚类;个数比较多的,粗聚类(2)根据实现方法分类K-means:按照质心分类层次聚类:对数据进行逐层划
- 二分K-means:让聚类更高效、更精准!
AI妈妈手把手
kmeans聚类支持向量机二分K-meansPython实现机器学习聚类算法
大家好!!欢迎再次来到我的技术分享博客~在前期文章中,我们系统剖析了K-means的随机初始化缺陷、Canopy+K-means的粗粒度预处理以及K-means++的概率化质心选择。今天,我们解锁另一种高效优化方案——二分K-means(BisectingK-Means),它用层次分裂策略彻底规避初始点敏感性问题,并与前三篇内容形成完美闭环!K-means算法详解Canopy+K-means优化方
- YOLO进化史:从v1到v12的注意力革命 —— 实时检测的“快”与“准”如何兼得?
摘取一颗天上星️
YOLO
⚙️一、初代奠基:打破两阶段检测的垄断(2016-2018)YOLOv1(2016):首次提出“单次检测”范式,将目标检测转化为回归问题。7×7网格+30维向量输出,实现45FPS实时检测,但小目标漏检严重。YOLOv2(2017):引入锚框(AnchorBoxes),通过k-means聚类确定先验框尺寸新增高分辨率微调(448×448输入)使用Darknet-19主干,速度达67FPSYOLOv
- 机器学习15-2(Mini Batch Kmeans)
Roy_Allen
MachineL机器学习batchkmeans
文章目录简介MiniBatchK-MeansDBSCAN基本原理具体实现简介除了K-Means快速聚类意外,还有两种常用的聚类算法能够进一步提升快速聚类的速度的MiniBatchK-Means算法能够和K-Means快速聚类形成性能上互补的算法DBSCAN密度聚类MiniBatchK-Means非常抱歉,需要先来一段理论基础做铺垫,速览即可!在K-Means的基础上增加了一个MiniBatch的抽
- 深度学习笔记
疯狂成瘾者
深度学习笔记人工智能
文章目录聚类导入模块生成模拟数据建立并训练K-Means聚类模型创建图形绘制散点图(聚类结果)获取聚类中心可视化聚类中心设置图形标题和标签输出效果数据降维一、常见的数据降维方法二、Python降维示例(用PCA将3D数据降至2D)✅第1部分:导入模块✅第2部分:生成模拟数据✅第3部分:PCA降维处理✅第4部分:开始绘图✅第5部分:绘制散点图✅第6部分:完善图像细节并显示✨最终效果数据降维的作用✅一
- 高斯混合模型(Gaussian Mixture Model, GMM)
爱看烟花的码农
ML机器学习概率论人工智能
一、GMM是什么?高斯混合模型(GaussianMixtureModel,GMM)是一种概率模型,用于表示数据分布是由多个高斯分布(正态分布)的加权组合构成的。它假设数据点是从若干个高斯分布中生成的,每个高斯分布代表一个“簇”或“子群体”。GMM是一种软聚类方法,与K-Means不同,它不仅能将数据点分配到某个簇,还能给出数据点属于每个簇的概率。1.1核心思想混合模型:GMM认为数据集中的每个数据
- 面试手撕代码-k-means算法
jiao_xd17
python
要求:随机生成x,y均在[0,10]范围内的10个点,k=2,训练一个简单的k-means模型。K均值算法步骤如下:1.在训练样本点中随机初始化[0,10]范围内的k个样本点作为k个簇各自的中心;2.遍历一遍所有样本点,将每一个样本点分配到最近的簇中心,得到clusterDict。clusterDict的键为centroidList的下标,键值为属于该类的所有样本点。3.计算第一次聚类迭代得到的结
- 机器学习手撕代码(3)k-means
54渣渣shuo
机器学习机器学习kmeans聚类
机器学习手撕代码(3)k-means本篇分享一下k-means的代码,k_means.py为K均值模型的代码。utils.py中为可视化结果的工具。dataset见本系列第0篇。k_means.pyfromdatasets.datasetimportDataSetimportmatplotlib.pyplotaspltimportnumpyasnpfromsklearnimportmanifold
- 【人工智能机器学习基础篇】——深入详解无监督学习之聚类,理解K-Means、层次聚类、数据分组和分类
猿享天开
人工智能数学基础专讲机器学习人工智能无监督学习聚类
深入详解无监督学习之聚类:如K-Means、层次聚类,理解数据分组和分类无监督学习是机器学习中的一个重要分支,旨在从未标注的数据中发现潜在的结构和模式。聚类(Clustering)作为无监督学习的核心任务之一,广泛应用于数据分组、模式识别和数据压缩等领域。本文将深入探讨两种常用的聚类算法:K-Means聚类和层次聚类,并详细解释它们在数据分组和分类中的应用。目录深入详解无监督学习之聚类:如K-Me
- 《Sklearn 机器学习模型--分类模型》--K-means 聚类(K-means clustering algorithm)
非门由也
机器学习数据分析机器学习sklearn分类
K-means聚类算法K-means聚类算法是一种基于划分的无监督学习算法,通过迭代优化将数据划分为指定簇数(K值),使同一簇内样本相似度最大化、簇间差异最大化34。以下从算法原理、实现步骤、应用场景及优缺点展开说明:一、核心原理与实现步骤核心原理K-均值聚类(K-MeansClustering)是一种无监督学习算法,其基本思想是将数据集划分为K个不同的簇,使得每个样本点都属于离它最近的簇中心。
- 【机器学习与数据挖掘实战 | 医疗】案例16:基于K-Means聚类的医疗保险的欺诈发现
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘kmeans聚类python
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 基于PCA和Kmeans的餐馆地区分类研究
1.实践任务说明对《中国2019年分地区连锁餐饮企业数据》中的7个经营指标(V2-V8)进行主成分分析(PCA),通过降维提取核心特征。首先标准化数据,然后计算主成分的方差贡献率,按累积贡献率≥85%确定保留的主成分数量,最终输出降维后的主成分得分及因子载荷矩阵,简化后续分析。基于K-Means聚类算法对餐饮企业数据进行分析,首先读取true_restaurant.csv文件中的PC1指标数据并进
- 农产品产量智能预测(聚类实际落地场景)
数字化与智能化
机器学习场景落地-智慧农业聚类机器学习
聚类算法在农产品产量智能预测中可通过对多维度数据的分类与模式识别,为产量预测提供更精准的分析基础,其应用场景主要涉及数据预处理、影响因素分析、产量区域划分等多个关键环节,以下是具体介绍:1、数据预处理与特征提取【1】数据清洗与分类农产品产量相关数据(如气象数据、土壤指标、历史产量等)常存在噪声或缺失值,聚类算法可对同类数据进行聚合,识别异常数据点,提升数据质量。例如:利用K-means算法对不同年
- Stanford CS246 homework of NTHU-CS-MDA lecture ( K-means )
Gravitychen
pythonkmeans
conceptc1:10个cluster的起点,随机起点c2:10个cluster的起点,很远的起点data:所有数据,最长维度==233使用mac注意hadoop只能用os本身的python,我裝了anaconda,需要先移開,並在ospythonpipnumpy才能用記得在文件開頭加上#!/usr/bin/envpython要使用文件名稱的話,加上try:input_file=os.envir
- 机器学习基础相关问题
真的没有脑袋
算法面经汇总机器学习人工智能面试计算机视觉算法
机器学习相关的基础问题K-means是否一定会收敛K-means是否一定会收敛K-means算法在有限步数内一定会收敛,但收敛到的可能是局部最优解而非全局最优解。以下是详细分析:K-means的优化目标是最小化样本到其所归属簇中心的距离平方和(SSE,SumofSquaredErrors)。因此,每一次迭代都单调减小(或保持不变)损失函数,而SSE有下界(不能为负数),所以一定会收敛。在实际实现中
- 聚类算法性能对比:K-means vs DBSCAN vs 层次聚类
AI智能探索者
算法聚类kmeansai
聚类算法性能对比:K-meansvsDBSCANvs层次聚类关键词:聚类算法、K-means、DBSCAN、层次聚类、性能对比、机器学习、无监督学习摘要:聚类是无监督学习的核心任务之一,广泛应用于用户分群、图像分割、异常检测等场景。本文将用“分水果”“找朋友”“建家谱”等生活化比喻,从原理、优缺点到实战场景,一步一步对比K-means、DBSCAN、层次聚类三种主流算法。无论你是刚入门的机器学习爱
- 聚类算法参数调优指南:如何获得最佳分组效果
AIGC应用创新大全
算法聚类数据挖掘ai
聚类算法参数调优指南:如何获得最佳分组效果关键词:聚类算法、参数调优、K-means、DBSCAN、轮廓系数、Calinski-Harabasz、高维数据摘要:聚类算法是无监督学习的核心工具,广泛用于用户分群、图像分割、异常检测等场景。但很多人发现:即使选对了算法,参数设置不当也会导致“分组混乱”或“簇无意义”。本文将用“分糖果”“找人群”等生活案例,结合Python代码实战,从底层逻辑到调优技巧
- 高斯混合模型(GMM)——完整推导与代码实现
Expecto0
机器学习机器学习算法
GaussianMixedModel应用聚类K-means无法处理两个聚类中心点相同的类。比如A∼N(μ, σ12), B∼N(μ,σ22)A\simN(\mu,\;\sigma_1^2),\;B\simN(\mu,\sigma_2^2)A∼N(μ,σ12),B∼N(μ,σ22)是无法用k-means进行聚类的。密度估计新数据的生成原理我们认为数据空间是由某些高斯分布生成的,但对于某一具体的样
- C++ 实现 K-Means 聚类算法在图像分割中的应用
数字魔方操控师
c++聚类算法开发语言K-Means
K-Means聚类算法在图像分割中的C++实现1.K-Means聚类算法原理K-Means是一种经典的无监督学习算法,用于将数据点划分为K个不同的簇。其核心思想是通过迭代优化,使得每个数据点到其所属簇中心的距离平方和最小。算法步骤如下:初始化:随机选择K个数据点作为初始簇中心分配:将每个数据点分配到距离最近的簇中心更新:重新计算每个簇的中心迭代:重复步骤2和3,直到簇中心不再变化或达到最大迭代次数
- 机器学习算法-k-means
不会敲代码的灵长类
机器学习kmeans算法机器学习
今天我们用「超市顾客分组」的例子来讲解K-means算法,从原理到实现一步步拆解,保证零基础也能懂!例子背景假设你是超市经理,手上有顾客的以下数据:顾客ID每月消费金额(元)每周到店次数130002250008335003470006520001你想把顾客分成3个群体,分别制定营销策略,该怎么做?K-means原理1.核心思想"物以类聚"——让相似特征的顾客自动聚成一类➡️通过计算距离,把数据划分
- TensorFlow深度学习实战(18)——K-means 聚类详解
盼小辉丶
深度学习tensorflowkmeans
TensorFlow深度学习实战(18)——K-means聚类详解0.前言1.K-means聚类2.实现K-means聚类2.1算法实现2.2肘部法则3.K-means算法变体小结系列链接0.前言K-means聚类是一种常用的无监督学习算法,用于将数据集划分为若干个互不重叠的簇(cluster),使得同一簇内的数据点尽可能相似,而不同簇之间的数据点尽可能不同。在本节中,将介绍K-means聚类的基
- Python中Slic超像素分割技术的实现与应用
轮胎技术Tyretek
本文还有配套的精品资源,点击获取简介:超像素分割是图像处理的关键技术,将像素按规则组合成具有相似特征的超像素集合。Python中的Slic算法是该领域的常用算法,结合色彩、空间信息,通过K-means聚类进行分割。Slic算法通过预处理、采样、量化、聚类、优化和重复等步骤,生成平滑边界和接近边缘形状的超像素。本文介绍Slic算法的核心思想、步骤及在Python中的实现方法,提供代码示例,并讨论算法
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。