- 基于RSS与KNN的室内定位技术实现
火箭统
本文还有配套的精品资源,点击获取简介:室内定位技术对于智能建筑和物联网至关重要,在没有GPS信号的环境中尤其重要。RSS位置指纹法利用特定位置的无线信号强度来确定设备位置,而KNN算法能够基于信号强度找到最近的已知位置进行预测。本教程详细讲解了如何在MATLAB中通过”positioning_simulation.m”代码实现RSS位置指纹法与KNN算法的结合,涵盖数据预处理、算法实现、位置预测、
- 数据挖掘算法:KNN、SVM、决策树详解
大力出奇迹985
数据挖掘算法支持向量机
本文将详细解析数据挖掘领域中常用的三种经典算法:KNN(K近邻算法)、SVM(支持向量机)和决策树。首先分别阐述每种算法的核心原理、实现步骤,再分析它们的优缺点及适用场景,最后对这三种算法进行综合对比与总结。通过本文,读者能全面了解这三种算法的特性,为实际数据挖掘任务中算法的选择提供参考,助力提升数据处理与分析的效率和准确性。在当今信息爆炸的时代,数据挖掘技术在各行各业发挥着至关重要的作用,而算法
- 踏上人工智能之旅(一)-----机器学习之knn算法
Sunhen_Qiletian
人工智能机器学习算法python
目录一、机器学习是什么(1)概述(2)三种类型1.监督学习(SupervisedLearning):2.无监督学习(UnsupervisedLearning):3.强化学习(ReinforcementLearning):二、KNN算法的基本原理:1.距离度量:2.K值的选择:3.投票机制和投票:三、Python实现KNN算法1.导入必要的库和数据:2.提取特征和标签:3.导入KNN分类器并训练模型
- 深入详解K近邻算法(KNN):基本概念、原理及在医学影像领域的应用与实现
猿享天开
近邻算法算法医学影像人工智能机器学习大模型
博主简介:CSDN博客专家、CSDN平台优质创作者,高级开发工程师,数学专业,10年以上C/C++,C#,Java等多种编程语言开发经验,拥有高级工程师证书;擅长C/C++、C#等开发语言,熟悉Java常用开发技术,能熟练应用常用数据库SQLserver,Oracle,mysql,postgresql等进行开发应用,熟悉DICOM医学影像及DICOM协议,业余时间自学JavaScript,Vue,
- yolov8seg如何获取每个结果的mask,不是一整个的mask
boss-dog
视觉算法开发yolov8rk3588
使用rk3588开发板对yolov8-seg进行推理时,瑞芯微官方代码中对推理的结果进行了封装,返回的分割结果是所有目标的mask,而不是单个目标的mask。yolov8seg怎么获得每个结果的mask,不是一整个的mask:https://github.com/airockchip/rknn_model_zoo/issues/175解决postprocess.h中关于检测结果的结构体解析type
- RK3568笔记九十三:基于RKNN Lite的YOLOv5目标检测
殷忆枫
RK3568学习笔记笔记YOLO
若该文为原创文章,转载请注明原文出处。一、介绍Yolov5是一种目标检测算法,属于单阶段目标检测方法,是在COCO数据集上预训练的物体检测架构和模型系列,它代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。最新的YOLOv5v7.0有YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x等,除了目标检测,
- 《机器学习实战》笔记(03):决策树
巨輪
机器学习机器学习决策树
决策树kNN算法可以完成很多分类任务,但是它最大的缺点就是给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解决策树的构造优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。缺点:可能会产生过度匹配问题。适用数据类型:数值型和标称型。创建分支的伪代码函数createBranch()Checkifeveryiteminthedatasetisinthesa
- 用KNN算法入门机器学习:原理、实战与代码详解
TJDG567
算法机器学习人工智能k近邻算法
引言K最近邻(K-NearestNeighbors,KNN)是机器学习中最简单且直观的算法之一,非常适合分类和回归任务。它的核心思想是“物以类聚”,即相似的数据点在特征空间中通常属于同一类别。本文将深入浅出地讲解KNN的原理、优缺点、应用场景,并通过Python代码实战演示如何实现一个完整的KNN分类任务。1.KNN算法原理1.1算法概述KNN是一种**惰性学习(LazyLearning)**算法
- KNN 算法进阶:从基础到优化的深度解析
二向箔reverse
人工智能机器学习
在机器学习的广袤领域中,K-近邻算法(K-NearestNeighbors,KNN)以其简洁直观的理念,宛如一颗璀璨的明星,照亮了无数初学者踏入机器学习大门的道路。自1951年由EvelynFix和JosephHodges创立,并经ThomasCover进一步完善以来,KNN算法凭借其独特的魅力,在数据挖掘、推荐系统、物联网等众多领域发挥着中流砥柱的作用,成为了监督学习算法家族中不可或缺的一员。一
- 机器学习篇-KNN算法实现鸢尾花模型和手写数字识别模型
一.KNN简介KNN思想K-近邻算法(KNearestNeighbor,简称KNN)。比如:根据你的“邻居”来推断出你的类别KNN算法思想:如果一个样本在特征空间中的k个最相似的样本中的大多数属于某一个类别,则该样本也属于这个类别K值根据网格和交叉验证来确定样本相似性:样本都是属于一个任务数据集的。样本距离越近则越相似。利用K近邻算法预测电影类型K值的选择KNN的应用方式解决问题:分类问题、回归问
- 机器学习之KNN算法:鸢尾花案例
进阶到入土
机器学习算法人工智能
一、KNN算法(又称近邻算法)核心思想:若一个样本在特征空间中有k个相似的样本且其中大多数同属于某一类别,那么这个样本也属于该类别。大白话版:我在什么地方,问我附近邻居二、相似性的判断那么如何判断哪些算是近邻?我们采用距离指标来进行衡量。常见的距离指标有:欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离。其中欧氏距离最为常用。①欧氏距离欧氏距离就是指两点空间上的距离,该方法的公式相信很多人都比较
- 机器学习(一)KNN,K近邻算法(K-Nearest Neighbors)
星期天要睡觉
机器学习近邻算法人工智能
建议初学者掌握KNN作为理解其他复杂算法(如SVM、决策树、神经网络)的基石。K近邻算法(K-NearestNeighbors,KNN)详解:原理、实践与优化K近邻算法(K-NearestNeighboKrs,简称KNN)是一种经典、直观且易于实现的监督学习方法,既可用于分类,也可用于回归。它“懒惰”地存储所有训练样本,直到有新样本需要预测时才临时计算,因此也被称为“懒惰学习算法”。本文将系统介绍
- 机器学习之K-近邻算法
paid槮
机器学习近邻算法人工智能
什么是K-近邻算法K-近邻算法(KNN)概念KNearestNeighbor算法⼜叫KNN算法,这个算法是机器学习⾥⾯⼀个⽐较经典的算法,总体来说KNN算法是相对⽐较容易理解的算法定义如果⼀个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的⼤多数属于某⼀个类别,则该样本也属于这个类别。来源:KNN算法最早是由Cover和Hart提出的⼀种分类算法距离公式两个样本的距离可以通过如下公式计
- 机器学习基础-k 近邻算法(从辨别水果开始)
耐思nice~
机器学习由浅入深-吴恩达机器学习近邻算法人工智能
一、生活中的"分类难题"与k近邻的灵感你有没有这样的经历:在超市看到一种从没见过的水果,表皮黄黄的,拳头大小,形状圆滚滚。正当你犹豫要不要买时,突然想起外婆家的橘子好像就是这个样子——黄色、圆形、大小和拳头差不多。于是你推断:"这应该是橘子吧!"其实,这个看似平常的判断过程,竟然藏着机器学习中最经典的分类算法——k近邻(k-NearestNeighbors,简称kNN)的核心思想!1.1现实中的解
- rk3588 rknntoolkit模型转换及部署
Godlovesea
python
cankao参考实时视频取流GNOME桌面—NeardiLinux用户手册v1.1.2documentationhttp://wiki.neardi.com/wiki/linux_guide/zh_CN/docs/demo/demo_gnome.htmlRK3588部署rknntoolkit2进行模型转换_xingman510的博客-CSDN博客以yolov5篇---yolov5训练pt模型并转换
- JAVA实现KNN分类
xiaojimanman
javaKNN分类算法java
转载请注明出处:http://blog.csdn.net/xiaojimanman/article/details/51064307http://www.llwjy.com/blogdetail/f74b497c2ad6261b0ea651454b97a390.html个人博客站已经上线了,网址www.llwjy.com~欢迎各位吐槽~-------------------------------
- lucene 9.10向量检索基本用法
成长的小牛233
lucene全文检索
Lucene9.10中的KnnFloatVectorQuery是用来执行最近邻(k-NearestNeighbors,kNN)搜索的查询类,它可以在一个字段中搜索与目标向量最相似的k个向量。以下是KnnFloatVectorQuery的基本用法和代码示例。1.索引向量字段首先,你需要一个包含向量字段的索引。你可以使用KnnFloatVectorField来添加向量到文档中。importorg.ap
- 3.17 补题(字符串,模拟)
ZZZS0516
算法c++
目录E-书法(字符串操作,移动指针)题目描述思路分析代码实现G-女神节的魔法花园(思维)题目描述思路分析代码实现H-KNN算法(模拟,排序)题目描述思路分析代码实现E-书法(字符串操作,移动指针)链接:书法来源:2025常熟理工学院天梯选拔赛题目描述在计算机上打字就是赛博书法,键盘如同笔,输入框就像纸,在键盘上输入一个个指令,就可以在输入框中写下自己想写的文字。现在你需要体验一次计算机的生活,目前
- Go-Redis × 向量检索实战用 HNSW 在 Redis 中索引与查询文本 Embedding(Hash & JSON 双版本)
Hello.Reader
数据库运维缓存技术golangredisembedding
1.场景与思路痛点:把“文本内容”转成向量后,如何在本地Redis里做近似向量搜索(KNN),而不依赖外部向量数据库?方案:利用HuggingFace模型sentence-transformers/all-MiniLM-L6-v2生成384维Float32向量;借助RediSearch的HNSW索引能力,在Hash或JSON文档里存储&查询向量;用go-redisv9的高阶API(FTCreate
- K近邻算法【python】【sklearn】
weixin_44985842
python近邻算法sklearn
0定义K近邻算法(K-NearestNeighbors,KNN)是一种基于实例的监督学习算法,主要用于分类和回归任务。其核心思想是:在特征空间中,对于待预测的样本,找到与其距离最近的k个已知样本(“邻居”),根据这k个邻居的类别(分类任务)或属性值(回归任务)来决定该样本的预测结果,,常用欧氏距离公式:对于两个n维样本点xi=(xi1,xi2,...,xin)x_i=(x_{i1},x_{i2},
- Elasticsearch混合搜索深度解析(下):执行机制与完整流程
GeminiJM
ES学习笔记elasticsearchjenkins大数据
引言在上篇中,我们发现了KNN结果通过SubSearch机制被保留的关键事实。本篇将继续深入分析混合搜索的执行机制,揭示完整的处理流程,并解答之前的所有疑惑。深入源码分析1.SubSearch的执行机制1.1KnnScoreDocQueryBuilder的实现KNN结果被转换为KnnScoreDocQueryBuilder,这个类负责在查询阶段重新执行KNN搜索://server/src/main
- 机器学习-K近邻算法
shy_snow
python机器学习机器学习近邻算法人工智能
k-近邻分类算法,即物以类聚的思想,通过已知分类中的点和未知分类的点距离最近的前k个点的分类来预测未知点的分类。kNN.pyfromnumpyimport*importoperatordefcreateDataSet():group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])labels=['A','A','B','B']returngroup,label
- 神经网络初步学习3——数据与损失
X Y O
神经网络学习人工智能
一、传统机器学习与神经网络前言:该部分需要一定的机器学习与数学基础(很浅的基础),如果有不理解的地方可以自行查阅。(1)区别这里不妨以图像识别为例子:(1)在传统的机器学习视角中:我们需要人工手动去设置并提取我们的特征量,例如常见的SIFT、SURF和HOG等,随后需要我们选择合适的分类器(例如:SVM、KNN等分类器),接着把我们的参数训练出来。(2)而在神经网络的视角中:我们只需要把图片喂给它
- rk3566开发之rknn npu 部署
三十度角阳光的问候
rknnnpurk3566目标检测
目录NPU使用RKNN模型非RKNN模型RKNN-Toolkit2工具RKNNNPU测试代码如下main.ccssd.cc调用ssd模型进行目标检测测试ssd.hqt中调用rknnnpu接口NPU使用RK3566内置NPU模块。使用该NPU需要下载RKNNSDK,RKNNSDK为带有NPU的RK3566/RK3568芯片平台提供编程接口,能够帮助用户部署使用RKNN-Toolkit2导出的RKNN
- KNN(K-近邻算法)(上)--day05
扫把星133
机器学习python人工智能近邻算法算法
KNN(K-NearestNeighbors,K近邻算法)是一种用于分类和回归的非参数化方法。其基本思想是通过找出与新样本最接近的已标记数据中的K个最近邻居来进行预测或分类。注释:非参数化方法是指在统计学和机器学习中,不对数据分布做出严格假设(这些假设通常包括
- 【学习】《算法图解》第十二章学习笔记:K近邻算法
程序员
前言《算法图解》第十二章介绍了一种简单而强大的机器学习算法——K近邻算法(K-NearestNeighbors,简称KNN)。这是一种基于实例的学习方法,也是机器学习领域中最基础、最直观的算法之一。本章不仅讲解了KNN的基本原理和实现方式,还探讨了特征提取、归一化等重要概念,为读者打开了机器学习的大门。本笔记将梳理KNN算法的核心思想、实现步骤以及应用场景。一、K近邻算法概述(一)基本思想K近邻算
- 七天学完十大机器学习经典算法-05.从投票到分类:K近邻(KNN)算法完全指南
接上一篇《七天学完十大机器学习经典算法-04.随机森林:群众智慧的机器学习实践》想象一下,你搬进了一个新小区。想知道这个小区整体氛围如何?最直接的方法就是看看你最近的几家邻居是什么样的人——如果邻居们都很安静、整洁,小区大概率不错;如果邻居们深夜喧哗、环境杂乱,你可能就得重新考虑了。K近邻(K-NearestNeighbors,KNN)算法的核心思想,就如同这个观察邻居的过程。它是机器学习中最直观
- Python实例题:基于 KNN 算法的手写数字识别
目录Python实例题题目要求:解题思路:代码实现:Python实例题题目基于KNN算法的手写数字识别要求:实现一个基于K-NearestNeighbors(KNN)算法的手写数字识别系统。支持以下功能:使用MNIST数据集训练和测试模型实现KNN分类算法可视化手写数字样本评估模型性能(准确率、混淆矩阵等)添加用户交互界面,允许用户绘制数字并进行识别。解题思路:使用sklearn加载MNIST数据
- 【k近邻】 K-Nearest Neighbors算法原理及流程
F_D_Z
机器学习方法数理算法学习机器学习k近邻算法k-近邻算法
【k近邻】K-NearestNeighbors算法原理及流程【k近邻】K-NearestNeighbors算法距离度量选择与数据维度归一化【k近邻】K-NearestNeighbors算法k值的选择【k近邻】Kd树的构造与最近邻搜索算法【k近邻】Kd树构造与最近邻搜索示例k近邻算法(K-NearestNeighbors,简称KNN)是一种常用的监督学习算法,可以用于分类和回归问题。在OpenCV中
- rknn优化教程(三)
凌佚
rknnCPPxmakeYOLO目标检测c++
文章目录1.前述2.部分代码3.说明1.前述OK,这一篇博客将完整给出最后的优化教程,包括代码设计。首先有这样的目录结构:./rknn_engine├──include│├──def││└──rknn_define.h│└──rknn_engine.h├──src│├──common││├──rknn_data.h││└──rknn_functions.hpp│├──inference││├──i
- 关于旗正规则引擎中的MD5加密问题
何必如此
jspMD5规则加密
一般情况下,为了防止个人隐私的泄露,我们都会对用户登录密码进行加密,使数据库相应字段保存的是加密后的字符串,而非原始密码。
在旗正规则引擎中,通过外部调用,可以实现MD5的加密,具体步骤如下:
1.在对象库中选择外部调用,选择“com.flagleader.util.MD5”,在子选项中选择“com.flagleader.util.MD5.getMD5ofStr({arg1})”;
2.在规
- 【Spark101】Scala Promise/Future在Spark中的应用
bit1129
Promise
Promise和Future是Scala用于异步调用并实现结果汇集的并发原语,Scala的Future同JUC里面的Future接口含义相同,Promise理解起来就有些绕。等有时间了再仔细的研究下Promise和Future的语义以及应用场景,具体参见Scala在线文档:http://docs.scala-lang.org/sips/completed/futures-promises.html
- spark sql 访问hive数据的配置详解
daizj
spark sqlhivethriftserver
spark sql 能够通过thriftserver 访问hive数据,默认spark编译的版本是不支持访问hive,因为hive依赖比较多,因此打的包中不包含hive和thriftserver,因此需要自己下载源码进行编译,将hive,thriftserver打包进去才能够访问,详细配置步骤如下:
1、下载源码
2、下载Maven,并配置
此配置简单,就略过
- HTTP 协议通信
周凡杨
javahttpclienthttp通信
一:简介
HTTPCLIENT,通过JAVA基于HTTP协议进行点与点间的通信!
二: 代码举例
测试类:
import java
- java unix时间戳转换
g21121
java
把java时间戳转换成unix时间戳:
Timestamp appointTime=Timestamp.valueOf(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()))
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:m
- web报表工具FineReport常用函数的用法总结(报表函数)
老A不折腾
web报表finereport总结
说明:本次总结中,凡是以tableName或viewName作为参数因子的。函数在调用的时候均按照先从私有数据源中查找,然后再从公有数据源中查找的顺序。
CLASS
CLASS(object):返回object对象的所属的类。
CNMONEY
CNMONEY(number,unit)返回人民币大写。
number:需要转换的数值型的数。
unit:单位,
- java jni调用c++ 代码 报错
墙头上一根草
javaC++jni
#
# A fatal error has been detected by the Java Runtime Environment:
#
# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00000000777c3290, pid=5632, tid=6656
#
# JRE version: Java(TM) SE Ru
- Spring中事件处理de小技巧
aijuans
springSpring 教程Spring 实例Spring 入门Spring3
Spring 中提供一些Aware相关de接口,BeanFactoryAware、 ApplicationContextAware、ResourceLoaderAware、ServletContextAware等等,其中最常用到de匙ApplicationContextAware.实现ApplicationContextAwaredeBean,在Bean被初始后,将会被注入 Applicati
- linux shell ls脚本样例
annan211
linuxlinux ls源码linux 源码
#! /bin/sh -
#查找输入文件的路径
#在查找路径下寻找一个或多个原始文件或文件模式
# 查找路径由特定的环境变量所定义
#标准输出所产生的结果 通常是查找路径下找到的每个文件的第一个实体的完整路径
# 或是filename :not found 的标准错误输出。
#如果文件没有找到 则退出码为0
#否则 即为找不到的文件个数
#语法 pathfind [--
- List,Set,Map遍历方式 (收集的资源,值得看一下)
百合不是茶
listsetMap遍历方式
List特点:元素有放入顺序,元素可重复
Map特点:元素按键值对存储,无放入顺序
Set特点:元素无放入顺序,元素不可重复(注意:元素虽然无放入顺序,但是元素在set中的位置是有该元素的HashCode决定的,其位置其实是固定的)
List接口有三个实现类:LinkedList,ArrayList,Vector
LinkedList:底层基于链表实现,链表内存是散乱的,每一个元素存储本身
- 解决SimpleDateFormat的线程不安全问题的方法
bijian1013
javathread线程安全
在Java项目中,我们通常会自己写一个DateUtil类,处理日期和字符串的转换,如下所示:
public class DateUtil01 {
private SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public void format(Date d
- http请求测试实例(采用fastjson解析)
bijian1013
http测试
在实际开发中,我们经常会去做http请求的开发,下面则是如何请求的单元测试小实例,仅供参考。
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.httpclient.HttpClient;
import
- 【RPC框架Hessian三】Hessian 异常处理
bit1129
hessian
RPC异常处理概述
RPC异常处理指是,当客户端调用远端的服务,如果服务执行过程中发生异常,这个异常能否序列到客户端?
如果服务在执行过程中可能发生异常,那么在服务接口的声明中,就该声明该接口可能抛出的异常。
在Hessian中,服务器端发生异常,可以将异常信息从服务器端序列化到客户端,因为Exception本身是实现了Serializable的
- 【日志分析】日志分析工具
bit1129
日志分析
1. 网站日志实时分析工具 GoAccess
http://www.vpsee.com/2014/02/a-real-time-web-log-analyzer-goaccess/
2. 通过日志监控并收集 Java 应用程序性能数据(Perf4J)
http://www.ibm.com/developerworks/cn/java/j-lo-logforperf/
3.log.io
和
- nginx优化加强战斗力及遇到的坑解决
ronin47
nginx 优化
先说遇到个坑,第一个是负载问题,这个问题与架构有关,由于我设计架构多了两层,结果导致会话负载只转向一个。解决这样的问题思路有两个:一是改变负载策略,二是更改架构设计。
由于采用动静分离部署,而nginx又设计了静态,结果客户端去读nginx静态,访问量上来,页面加载很慢。解决:二者留其一。最好是保留apache服务器。
来以下优化:
- java-50-输入两棵二叉树A和B,判断树B是不是A的子结构
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/25411174201011445550396/
import ljn.help.*;
public class HasSubtree {
/**Q50.
* 输入两棵二叉树A和B,判断树B是不是A的子结构。
例如,下图中的两棵树A和B,由于A中有一部分子树的结构和B是一
- mongoDB 备份与恢复
开窍的石头
mongDB备份与恢复
Mongodb导出与导入
1: 导入/导出可以操作的是本地的mongodb服务器,也可以是远程的.
所以,都有如下通用选项:
-h host 主机
--port port 端口
-u username 用户名
-p passwd 密码
2: mongoexport 导出json格式的文件
- [网络与通讯]椭圆轨道计算的一些问题
comsci
网络
如果按照中国古代农历的历法,现在应该是某个季节的开始,但是由于农历历法是3000年前的天文观测数据,如果按照现在的天文学记录来进行修正的话,这个季节已经过去一段时间了。。。。。
也就是说,还要再等3000年。才有机会了,太阳系的行星的椭圆轨道受到外来天体的干扰,轨道次序发生了变
- 软件专利如何申请
cuiyadll
软件专利申请
软件技术可以申请软件著作权以保护软件源代码,也可以申请发明专利以保护软件流程中的步骤执行方式。专利保护的是软件解决问题的思想,而软件著作权保护的是软件代码(即软件思想的表达形式)。例如,离线传送文件,那发明专利保护是如何实现离线传送文件。基于相同的软件思想,但实现离线传送的程序代码有千千万万种,每种代码都可以享有各自的软件著作权。申请一个软件发明专利的代理费大概需要5000-8000申请发明专利可
- Android学习笔记
darrenzhu
android
1.启动一个AVD
2.命令行运行adb shell可连接到AVD,这也就是命令行客户端
3.如何启动一个程序
am start -n package name/.activityName
am start -n com.example.helloworld/.MainActivity
启动Android设置工具的命令如下所示:
# am start -
- apache虚拟机配置,本地多域名访问本地网站
dcj3sjt126com
apache
现在假定你有两个目录,一个存在于 /htdocs/a,另一个存在于 /htdocs/b 。
现在你想要在本地测试的时候访问 www.freeman.com 对应的目录是 /xampp/htdocs/freeman ,访问 www.duchengjiu.com 对应的目录是 /htdocs/duchengjiu。
1、首先修改C盘WINDOWS\system32\drivers\etc目录下的
- yii2 restful web服务[速率限制]
dcj3sjt126com
PHPyii2
速率限制
为防止滥用,你应该考虑增加速率限制到您的API。 例如,您可以限制每个用户的API的使用是在10分钟内最多100次的API调用。 如果一个用户同一个时间段内太多的请求被接收, 将返回响应状态代码 429 (这意味着过多的请求)。
要启用速率限制, [[yii\web\User::identityClass|user identity class]] 应该实现 [[yii\filter
- Hadoop2.5.2安装——单机模式
eksliang
hadoophadoop单机部署
转载请出自出处:http://eksliang.iteye.com/blog/2185414 一、概述
Hadoop有三种模式 单机模式、伪分布模式和完全分布模式,这里先简单介绍单机模式 ,默认情况下,Hadoop被配置成一个非分布式模式,独立运行JAVA进程,适合开始做调试工作。
二、下载地址
Hadoop 网址http:
- LoadMoreListView+SwipeRefreshLayout(分页下拉)基本结构
gundumw100
android
一切为了快速迭代
import java.util.ArrayList;
import org.json.JSONObject;
import android.animation.ObjectAnimator;
import android.os.Bundle;
import android.support.v4.widget.SwipeRefreshLayo
- 三道简单的前端HTML/CSS题目
ini
htmlWeb前端css题目
使用CSS为多个网页进行相同风格的布局和外观设置时,为了方便对这些网页进行修改,最好使用( )。http://hovertree.com/shortanswer/bjae/7bd72acca3206862.htm
在HTML中加入<table style=”color:red; font-size:10pt”>,此为( )。http://hovertree.com/s
- overrided方法编译错误
kane_xie
override
问题描述:
在实现类中的某一或某几个Override方法发生编译错误如下:
Name clash: The method put(String) of type XXXServiceImpl has the same erasure as put(String) of type XXXService but does not override it
当去掉@Over
- Java中使用代理IP获取网址内容(防IP被封,做数据爬虫)
mcj8089
免费代理IP代理IP数据爬虫JAVA设置代理IP爬虫封IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
Java语言有两种方式使用代理IP访问网址并获取内容,
方式一,设置System系统属性
// 设置代理IP
System.getProper
- Nodejs Express 报错之 listen EADDRINUSE
qiaolevip
每天进步一点点学习永无止境nodejs纵观千象
当你启动 nodejs服务报错:
>node app
Express server listening on port 80
events.js:85
throw er; // Unhandled 'error' event
^
Error: listen EADDRINUSE
at exports._errnoException (
- C++中三种new的用法
_荆棘鸟_
C++new
转载自:http://news.ccidnet.com/art/32855/20100713/2114025_1.html
作者: mt
其一是new operator,也叫new表达式;其二是operator new,也叫new操作符。这两个英文名称起的也太绝了,很容易搞混,那就记中文名称吧。new表达式比较常见,也最常用,例如:
string* ps = new string("
- Ruby深入研究笔记1
wudixiaotie
Ruby
module是可以定义private方法的
module MTest
def aaa
puts "aaa"
private_method
end
private
def private_method
puts "this is private_method"
end
end