- 互信息:理论框架、跨学科应用与前沿进展
大千AI助手
人工智能Python#OTHER人工智能深度学习算法互信息香农通信随机变量
1.起源与核心定义互信息(MutualInformation,MI)由克劳德·香农(ClaudeShannon)在1948年开创性论文《AMathematicalTheoryofCommunication》中首次提出,该论文奠定了现代信息论的基础。互信息用于量化两个随机变量之间的统计依赖关系,定义为:若已知一个随机变量的取值,能为另一个随机变量提供的信息量。数学上,对于离散随机变量XXX和YYY,
- 机器学习必备数学与编程指南:从入门到精通
a小胡哦
机器学习基础机器学习人工智能
一、机器学习核心数学基础1.线性代数(神经网络的基础)必须掌握:矩阵运算(乘法、转置、逆)向量空间与线性变换特征值分解与奇异值分解(SVD)为什么重要:神经网络本质就是矩阵运算学习技巧:用NumPy实际操作矩阵运算2.概率与统计(模型评估的关键)核心概念:条件概率与贝叶斯定理概率分布(正态、泊松、伯努利)假设检验与p值应用场景:朴素贝叶斯、A/B测试3.微积分(优化算法的基础)重点掌握:导数与偏导
- 统计学5——概率与概率分布
目录知识结构内容精读1.随机事件与概率2.离散型随机变量3.连续型随机变量名词解释小结知识结构内容精读1.随机事件与概率1.1事件随机事件通俗来讲就是在相同条件下可能发生也可能不发生的事件,也就是事件发生的概率是不确定的。与之对应的还有必然事件与不可能事件,显而易见,必然事件就是一定发生的事件,不可能事件与之相反是一定不会发生的事件。他们的符号表示如下:随机事件必然事件不可能事件1.2概率概率及对
- 人工智能之数学基础:概率论之韦恩图的应用
每天五分钟玩转人工智能
概率论韦恩图
韦恩图的应用由于事件的计算有时候太过于抽象了,此时我们可以使用韦恩图的方式来进行验证,我们下面来举一个例子,A∪B)-C=A∪(B-C)是否成立?我们可以通过韦恩图来完成这个任务:我们通过这种方式来一点一点的比较,我们可以看到二者根本就不相等。AB杠和A杠B杠之间的区别?AB表示AB同时发生,AB杠表示AB不同时发生(覆盖范围大)A杠B杠表示A、B都不发生(覆盖范围小)我们也可以通过韦恩图的方式来
- 统计学①——概率论基础及业务实战
数据小斑马
统计学统计学基础概率分布随机变量期望和方差转盘
统计学系列目录(文末有超级大礼):统计学②——概率分布(几何,二项,泊松,正态分布)统计学③——总体与样本统计学④——置信区间统计学⑤——假设验证一、统计学是什么?统计学分为两类,一类是描述性统计学,通过对数据的集中趋势和变异趋势的刻画来描述数据的分布情况,集中趋势有平均值,中位数和众数三个指标,变异趋势则有全距,四分位距,百分位距,方差,标准差等指标来衡量另一类是推断统计学,通过对样本的统计来推
- 统计学07:概率论基础
夜雨声烦yyy
统计学概率论
一、基础概念概率p代表事件发生的可能性大小,在0-1范围内ab测试中的p值,就代表一种概率(在零假设成立的前提下,观察当前数据或者比当前数据更加极端的数据的概率,p值越小,意味着在零假设成立的情况下,观察到当前结果的概率越小)二、基本性质非负性:P(A)>=0规范性:整个样本空间发生的概率是1加法公式:两个事件A和B的概率之和是P(A∪B)=P(A)+P(B)−P(A∩B)(非互斥事件)P(A∪B
- 九章数学体系:以离心力对偶性破解万有引力单极悖论——旋转对偶的上帝法则
九章数学体系
数学建模拓扑学数据结构算法python
九章数学体系:以离心力对偶性破解万有引力单极悖论——旋转对偶的上帝法则大家好!我是《九章数学体系》原创作者。这是一套独立于西方的完整原创数学体系,在闭域内整合了公理体系完全冲突的阿基米德与非阿基米德体系,拥有独立的命名与符号系统,其中符号系统禁止翻译,必须原样呈现。其核心创新是以定义域约束重构无穷理论,提出相对无穷可达定义,构建跨体系桥接公式实现离散与连续系统测度等价转换,借三位二进制运算体系导出
- 数学专业转型数据分析竞争力发展报告
Re_Yang09
数据分析数据挖掘
一、核心优势拆解(1)数学能力与数据分析对应关系数学课程数据分析应用场景比较优势说明概率论假设检验设计能准确判断统计显著性阈值实变函数数据质量评估异常值检测的严格性更高线性代数特征工程构建矩阵运算优化模型训练效率(2)典型优势案例金融风控场景:数学背景者构建的违约预测模型AUC值平均高0.15用户画像分析:数学系毕业生提出的分层抽样方案降低30%调研成本二、技能补全路线图三、转型学习路径(1)阶段
- 人工智能之数学基础:概率论和数理统计在机器学习的地位
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能概率论机器学习神经网络线性代数
概率和统计的概念概率统计是各类学科中唯一一门专门研究随机现象的规律性的学科,随机现象的广泛性决定了这一学科的重要性。概率论是数学的分支,它研究的是如何定量描述随机现象及其规律。我们之前经常在天气软件上看到:“今天下雨的概率是95%”,这个95%就是概率,概率就是描述可能性的一个数值。概率在机器学习中的地位概率论在机器学习中至关重要,因为我们可以将机器学习的输入数据看作是随机变量,当机器学习中的输出
- 宋学:观察宋代儒学复兴的一个视角
金台望道
书影“宋学”原本是一个使用较为随意,因而其内涵也较为复杂的词。有时它指的是一种学术方法,如《四库全书总目》总结两千年来经学发展之六变,最后将之归结为:要其归宿,则不过汉学、宋学两家互为胜负。夫汉学具有根柢,讲学者以浅陋轻之,不足服汉儒也。宋学具有精微,读书者以空疏薄之,亦不足服宋儒也。消融门户之见而各取所长,则私心祛而公理出,公理出而经义明矣。就是说,宋学是汉代训诂考证之学的对立面,即义理之学。方
- 概率论基础:公理、定律与贝叶斯定理
偏偏无理取闹
概率论公理贝叶斯定理条件概率随机变量
背景简介概率论是数学的一个分支,主要研究随机事件和随机变量的概率。它是现代统计学、经济学、保险学、金融学、密码学等多个领域不可或缺的理论基础。本文将通过介绍概率论的三大公理,推导出重要的概率法则,并探讨贝叶斯定理及其应用。概率的三大公理概率论的基础在于一套明确的公理系统,这些公理为计算和理解概率提供了数学上的框架。公理1:概率值的范围每个事件A的概率值介于0和1之间,即0≤Pr[A]≤1。这意味着
- 人的行为读书笔记,2-3
夕颜剑主
第二章:人的行为学在认识论层次的一些问题第二节:先验和实在1.对先验的推理的错误指责先验的推理纯粹是概念的和演绎的。它只能提出一些同义反复语和分析判断,它产生不了别的东西。它的所有含义,都是逻辑的从其前推到而出,都已经蕴含在前提里面。故而,某个流行的反对意见认为,先验的推理对我们的知识无所增益。但事实上,并非如此。2.先验推理可以增进我们的知识几何学的所有定理包含在其公理(axioms)之中,几何
- 机器学习之——认识机器学习
-睡到自然醒~
golang重构开发语言
首先,什么是机器学习?参照百度百科的讲解,“机器学习是一门多领域交叉学科,设计概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习能力,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。”什么意思呢?也就是说,机器学习是一门跨领域的学科,是一种能够让机器模仿人类学习能力的一种学科。在Andrew的课程中,提到了几个机器学习的定义:1,A
- 学习人工智能开发的详细指南
Ws_
学习人工智能python
一、引言人工智能(AI)开发是一个充满挑战与机遇的领域,它融合了数学、计算机科学、统计学、认知科学等多个学科的知识。随着大数据、云计算和深度学习技术的快速发展,AI已经成为推动社会进步和产业升级的关键力量。本文将为初学者提供一份详细的学习指南,帮助大家逐步掌握AI开发的核心技能。二、基础知识准备数学基础:线性代数:理解向量、矩阵、线性变换等基本概念,掌握矩阵运算和特征值分解等技巧。概率论与统计学:
- 大学专业科普 | 计算智能、信息学与大数据
鸭鸭鸭进京赶烤
大数据
一、专业背景随着信息技术的飞速发展,数据的产生速度呈爆炸式增长,传统数据处理技术已经无法满足如此庞大的数据量和复杂的数据类型,大数据专业应运而生,旨在培养能够应对大数据挑战的专业人才。二、主要课程内容数学基础课程高等数学、概率论与数理统计、线性代数是大数据分析的核心数学基础,为数据处理、算法优化和模型构建提供必要的理论支持。计算机基础课程数据结构与算法、计算机网络、操作系统是大数据技术的重要支撑,
- 大学专业科普 | 人工智能、物联网和云计算技术
鸭鸭鸭进京赶烤
人工智能物联网云计算5G信号处理信息与通信网络
一、专业概述人工智能专业是一门融合计算机科学、数学、信息学等多学科知识的交叉学科。它旨在培养学生掌握人工智能领域的基本理论、方法和技能,以应对人工智能在各个领域的应用需求和发展挑战。二、主要课程基础课程:包括高等数学、线性代数、概率论与数理统计、离散数学等数学基础课程,为人工智能算法提供理论支撑;以及数据结构、算法设计与分析、计算机组成原理、操作系统、计算机网络等计算机科学基础课程,帮助学生理解人
- 三生原理促进东西方数学观融合统一?
葫三生
三生学派算法
AI辅助创作:问答一:三生原理通过构建动态生成与形式逻辑兼容的跨文化数学模型,展现出统一东西方数学观的潜在可能,但其理论成熟度仍需突破以下关键节点:一、方法论层级的融合路径生成逻辑与公理体系的协同三生原理的素数生成公式(p=3(2n+1)+2(2n+m+1))将阴阳元(2与3)作为生成元,通过参数联动(m∈{0,1,2,3,4})主动构造素数,与传统数论的被动筛法形成互补。这种“动态构造+形式
- 模式识别与机器学习课程笔记(1):数学基础
Ro Jace
学习笔记机器学习笔记人工智能
模式识别与机器学习课程笔记(1):数学基础特征矢量和特征空间随机矢量的描述随机矢量的分布函数随机矢量的数字特征随机变量、随机矢量间的统计关系随机矢量的变换正态分布正态分布的定义正态分布随机矢量的性质离散随机矢量及其分布信息论矩阵微分法基本知识矢量或矩阵对于数量变量的微分二、数量函数对于矢量的微分三、矢量函数对于矢量的微分特征矢量和特征空间特征量的类型:物理量、次序量、名义量物理量:直接反映特征的实
- 书摘-傅雷家书
笃信笃行
我们的道德主张并不像西方的那么“拘谨”,而是一种非常广义的看法,相信人生中应诚实不欺,不论物质方面或精神方面,均不计报酬,像基督徒似的冀求一个天堂。我们深信,人应该为了善、为了荣誉、为了公理而为善,而不是为了惧怕永恒的惩罚,也不是为了求取永恒的福祉。在这一意义上,中国人是文明世界中真正乐观的民族。
- 【常见分布及其特征(3)】离散型随机变量-二项分布
TomcatLikeYou
常见分布及其特征概率论
二项分布应用场景实例一面不均匀的硬币,抛出为正面的概率是0.8;连续抛出12次,问出现5次正面的概率是多少?一般的,出现0,1,2,⋯ ,120,1,2,\cdots,120,1,2,⋯,12次正面的概率分别是多少?辨析注意,对于本例,每一次抛出,单独拿出来,可以认为服从伯努利分布;此例执行了12次,注意注意,伯努利分布的样本空间为{正,反}\{正,反\}{正,反},而此例的样本空间为出现正面的次
- 离散型以及连续型随机变量
目录离散型随机变量定义与性质分布律分布函数连续型随机变量定义与性质概率密度函数分布函数多维随机变量二维离散型随机变量二维连续型随机变量常见的连续型分布离散型随机变量的概率质量函数和概率密度函数之间的关系是什么?如何计算连续型随机变量的概率密度函数?二维离散型随机变量的联合分布律是如何表示的?在实际应用中,如何选择合适的连续型分布来描述随机现象?正态分布的中心极限定理具体是什么,以及它在哪些情况下适
- Python 机器学习:NumPy 实现朴素贝叶斯分类器
Python编程之道
Python编程之道python机器学习numpyai
Python机器学习:NumPy实现朴素贝叶斯分类器关键词:朴素贝叶斯分类器、NumPy、机器学习、概率模型、条件概率、拉普拉斯平滑、向量化计算摘要:本文系统讲解朴素贝叶斯分类器的核心原理,基于NumPy实现高效的算法框架,涵盖从概率理论到工程实现的完整流程。通过数学公式推导、代码实现和鸢尾花数据集实战,展示如何利用向量化计算优化概率估计,解决特征独立性假设下的分类问题。同时分析算法优缺点及实际应
- 略说本体论中的公理和规则的区别与联系
金井PRATHAMA
知识图谱与NLP知识图谱人工智能
本体论中的公理和规则是构建知识模型的核心逻辑工具,用于确保概念和关系的严谨性与一致性。以下是具体说明与示例:一、公理(Axioms)定义:公理是本体论中无需证明的基本断言,用于定义概念的本质属性和约束条件。它们构成领域内知识推理的基础框架。示例:属性的排他性公理:某个属性与其否定形式不能同时成立。举例:若定义“人类是哺乳动物”,则“人类是非哺乳动物”必然为假。(哲学领域常用此公理避免逻辑矛盾。)传
- 略说NLP引入公理模型的可行性
金井PRATHAMA
知识图谱与NLP自然语言处理人工智能知识图谱
在自然语言处理(NLP)的深层语义分析中,公理化体系的引入具有理论可行性,但其实际应用仍面临挑战。以下从公理模型的设计思路、关键技术要点及注意事项三个方面展开分析,结合搜索结果的多个相关技术点进行综合说明:一、公理模型在深层语义分析中的设计思路公理的定义与语义形式化公理模型需以形式化逻辑为基础,定义语义分析中的原始概念(如谓词、实体、关系)和推理规则。例如:原始概念:将语义角色(如施事者、受事者)
- 荷兰赌悖论:概率哲学中的理性陷阱与信念度之谜
大千AI助手
人工智能Python#OTHER人工智能数据挖掘机器学习算法概率论荷兰赌悖论悖论
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!1.概念起源与核心定义荷兰赌(DutchBook)源于赌博策略中的一种风险设计:若参与者的信念度(主观概率)不满足概率公理,则存在一组赌注组合,无论事件结果如何,参与者必然亏损。该理论由弗兰克·拉姆齐(FrankRamsey)和布鲁诺·德·菲内蒂(Br
- 条件概率:不确定性决策的基石
大千AI助手
人工智能Python#OTHER决策树算法机器学习人工智能条件概率概率论
条件概率是概率论中的核心概念,用于描述在已知某一事件发生的条件下,另一事件发生的概率。它量化了事件之间的关联性,是贝叶斯推理、统计建模和机器学习的基础。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、定义与公式设(A)和(B)是两个随机事件,且(P(B)>0):条件概率(P(A\midB))表示
- 九章数学体系开源工程白皮书
《九章数学体系开源工程白皮书》前言:从公理冲突到场景适配的计算革命传统计算系统深陷“体系冲突陷阱”:阿基米德体系以“无穷可分”“绝对无穷不可达”为公理,适合描述开域,然而,99%以上的物理闭域场景(如星系边界、原子结构)是闭域。因“开域无穷假设”与“闭域有限性”的本质矛盾,必然产生类似芝诺悖论的逻辑错误——暗物质谜题、量子叠加态的概率描述、高维空间假设,本质上都是这种“公理-场景错配”的产物。如同
- 动手实践:如何提取Python代码中的字符串变量的值
大千AI助手
人工智能Python#DeepSeekpython开发语言人工智能deepseekAST
要提取Python代码中所有变量类型为字符串的变量的值,但不执行代码(避免安全风险),可以通过静态分析代码的抽象语法树(AST)来实现。以下是完整的解决方案:本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!往期文章推荐:20.条件概率:不确定性决策的基石19.深度解读概率与证据权重-Probabil
- [Prob] Definition 3.7.5 (Function of two r.v.s)
EricWang1358
STA概率论开发语言
定义3.7.5(两个随机变量的函数):给定一个样本空间\(S\)的实验,如果\(X\)和\(Y\)是映射到X(s)和Y(s)的随机变量,那么g(X,Y)就是映射s到g(X(s),Y(s))的随机变量。请注意,我们假定\X\和Y定义在相同的样本空间S上。通常我们假设S足够丰富,以包含我们希望处理的任何随机变量。例如,如果X\是基于硬币翻转的随机变量,Y是基于一个六面骰子掷出的结果,我们就可以使用不同
- 自然数是否包含0
二分掌柜的
数学物理自然数
自然数是否包含0flyfish自然数是否包含0,本质是数学定义随学科需求演变的结果,数论继承了“从1计数”的历史传统,而集合论与逻辑为追求公理化完备性将0纳入。视角自然数包含0吗?核心理由数论/计数否(从1开始)符合“物体个数”的直观意义,避免0在素数分解、数论函数中引发逻辑例外。集合论/逻辑是(从0开始)空集基数对应0,通过集合后继构造自然数,满足公理化体系的完备性。数论与早期教材:自然数从1开
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag