hdu---1024Max Sum Plus Plus(动态规划)

Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 15898    Accepted Submission(s): 5171


Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
 

 

Input
Each test case will begin with two integers m and n, followed by n integers S 1, S 2, S 3 ... S n.
Process to the end of file.
 

 

Output
Output the maximal summation described above in one line.
 

 

Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
 

 

Sample Output
6
8
Hint
Huge input, scanf and dynamic programming is recommended.
 

 

Author
JGShining(极光炫影)
 
 题意:
   给定一段连续数字串,要你求出m个连续子串的最大值。
 比如
   下面这个样列
    2  6 -1 4 -2 3 -2 3
    给出一个长度为6的连续数字串,要你求出这个串中连续的m=2个子串的子串之和.......
   
对样列的一个数值分析
aa -1 4 -2 3 -2 3
第一遍 maxc -1 4 4 4 5 \
dp -1 4 2 5 3 6
第二遍 maxc -1 3 3 7 7 \
dp -1 3 2 7 5 8
             
             

代码

 1 #include<iostream>

 2 #include<string.h>

 3 #include<stdio.h>

 4 using namespace std;

 5 int a[1000001],dp[1000001],max1[1000001];

 6  int max(int x,int y){

 7     return x>y?x:y;

 8 }

 9   int main(){

10     int i,j,n,m,temp;

11     while(scanf("%d%d",&m,&n)!=EOF)

12     {

13          dp[0]=0;

14         for(i=1;i<=n;i++)

15         {

16           scanf("%d",&a[i]);

17           dp[i]=0;

18           max1[i]=0;

19          }

20         max1[0]=0;

21         for(i=1;i<=m;i++){

22             temp=-0x3f3f3f3f;

23             for(j=i;j<=n;j++){

24                 dp[j]=max(dp[j-1]+a[j],max1[j-1]+a[j]);

25                 max1[j-1]=temp;

26                 temp=max(temp,dp[j]);

27             }

28         }

29         printf("%d\n",temp);

30     }

31     return 0;

32   }
View Code

 优化后的代码:

 1 /*hdu 1024 @coder Gxjun*/

 2 #include<iostream>

 3 #include<cstdio>

 4 #include<cstring>

 5 #include<cstdlib>

 6 using namespace std;

 7 const int maxn=1000005;

 8 int aa[maxn],dp[maxn],maxc[maxn];

 9 int max(int a,int b){

10   return a>b?a:b;

11 }

12 int main()

13 {

14     int n,m,i,j,temp;

15     while(scanf("%d%d",&m,&n)!=EOF){

16         memset(maxc,0,sizeof(int)*(n+1));

17         memset(dp,0,sizeof(int)*(n+1));

18        for(i=1;i<=n;i++)

19           scanf("%d",&aa[i]);

20        for(i=1;i<=m;i++){

21           temp=-0x3f3f3f3f;

22        for(j=i;j<=n;j++){

23           dp[j]=max(dp[j-1],maxc[j-1])+aa[j];

24           maxc[j-1]=temp;

25           temp=max(temp,dp[j]);

26           }

27         }

28         printf("%d\n",temp);

29     }

30 }
View Code

 

你可能感兴趣的:(动态规划)