UC Berkeley Machine Learning 189/289A -- Study notes

---- Sept.2: 

-Inverse Covariance Matrix

Inverse Covariance Matrix:



---- Sept.3:

-Ridge Regression

Ridge Regression and PCA Regression relationship: 

Story behind Ridge Regression:


Derivation of Ridge Regression: (BU)


-Trace Matrix


-Frobenius Norm


---- Sept.4:

Properties of Matrices:

- Triangular Matrix:

---- Sept.5:

Binomial, Normal, Poisson Distribution:

- Natural number approximation


Maximum Likelihood Estimation:

- Intuition behind MLE

- Maximum A Posteriori

---- Sept.7:

- K-Folds Cross Validation

- Train/Test Split and Cross Validation in Python



- LASSO vs. Ridge Regression 

你可能感兴趣的:(UC Berkeley Machine Learning 189/289A -- Study notes)