- 点淘邀请码是什么怎么输入,点淘邀请码推广(注意细节问题邀请方法)
e95cfad15310
性能优异:安装包体积小,高速下载,浏览更省流量,运行流畅快速点淘邀请码点淘邀请码LRM8XZH9或LRYTO3FS或LRYTO3FS,诚邀你的加入。借助番茄小说强大的精准客户群体,该应用采取了进一步细分市场的策略。现在,用户无论是阅读还是听小说,都可以赚取零花钱。点淘邀请码点淘邀请码:LRM8XZH9、LRYTO3FS或LRYTO3FS,它的主要特点是提供海量的小说和广播节目,同时也具备一些社交互
- 使用Python操作Excel,删重复数据及keep参数用法并保存的例子
白帽黑客艾登
pythonexcel开发语言Python编程Python学习技能分享
01Ex按列标题删重复的数据解析:我们使用了pandas库读取Excel文件,并使用drop_duplicates()函数删除重复数据。其中,subset参数指定了删除重复数据的列(列名),keep参数指定了保留哪个重复记录(默认为第一个记录)。inplace=True参数表示在原始数据上进行操作。最后,我们使用to_excel()函数将处理后的数据,保存到一个新的Excel文件中,其中index
- Nvivo20 中文版安装包免费下载附详细安装教程|Nvivo20软件下载
[下载通道]:迅雷网盘[下载链接]:点击高速下载https://pan.xunlei.com/s/VOWJoryt_BBFsPixpPJxB1f0A1?pwd=5cei#⚠️:先用手机下载迅雷网盘保存到手机中,再用电脑登录下载,否则下载后文件容易报错❗保存的朋友点赞支持一下❗更多免费软件,影视,歌曲,游戏点这里https://docs.qq.com/sheet/DRkdWVFFCWm9UeGJP?
- 42、智能制造与数字化转型:创新之路与实践成果
game4
智能制造数字化转型数据处理
智能制造与数字化转型:创新之路与实践成果1.数据处理决策与架构挑战在数据处理方面,需要考虑多个关键决策维度,主要包括摄入、处理和持久化。1.1数据摄入方式原始数据摄入:直接获取最基础、未经过处理的数据,能保留数据的完整性和原始特征,但可能数据量较大,处理成本较高。聚合数据摄入:对原始数据进行一定程度的汇总和整合,减少数据量,便于后续分析,但可能会丢失一些细节信息。1.2数据处理模式集中式处理:将数
- 夸克svip自带版?夸克网盘加速券怎么获得?夸克盗版免费VIP?夸克vip破解教程免费
日常购物小技巧
夸克svip自带版?夸克网盘加速券怎么获得?夸克盗版免费VIP?夸克vip破解教程免费夸克网盘作为一款实用的云存储应用程序,为广大用户提供了便捷的在线文件组织和管理功能。本文将为您解答关于夸克SVIP自带版、加速券获取以及免费VIP的相关问题,帮助您更好地使用夸克网盘。一、夸克SVIP自带版夸克网盘的SVIP会员权益包括高速下载、大文件传输、视频倍速播放等,为用户提供更优质的体验。如果您想尝试使用
- 表征学习:机器认知世界的核心能力与前沿突破
大千AI助手
人工智能#OTHERPython学习人工智能机器学习神经网络表征学习RL特征工程
一、定义与背景:从特征工程到自动化学习表征学习(RepresentationLearning),又称特征学习(FeatureLearning),是机器学习的核心技术领域,其核心目标是通过算法自动学习数据的内在特征表示,将复杂多变的原始数据(如图像、文本、语音)转化为低维、富含语义信息的向量形式,从而提升下游任务(如分类、回归、聚类)的效率和精度。与传统依赖人工设计特征的特征工程(FeatureEn
- LeetCode - 字符串解码(栈数据结构/递归法)/ 接雨水(重复遍历/双指针法)
葵续浅笑
算法leetcode
欢迎光临小站:致橡树字符串解码给定一个经过编码的字符串,返回它解码后的字符串。编码规则为:k[encoded_string],表示其中方括号内部的encoded_string正好重复k次。注意k保证为正整数。你可以认为输入字符串总是有效的;输入字符串中没有额外的空格,且输入的方括号总是符合格式要求的。此外,你可以认为原始数据不包含数字,所有的数字只表示重复的次数k,例如不会出现像3a或2[4]的输
- 99% 的 Python 开发者都不知道的 gzip 高级用法
coder_风逝
Python数据挖掘分析pythonservlet开发语言
前言:为什么数据压缩如此重要?在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题。想象一下,当你需要处理日志文件、API响应或数据库备份时,原始数据往往占用大量空间。Python内置的gzip模块提供了一种简单高效的解决方案,可以轻松将数据压缩到原大小的1/3甚至更小!本文将带你深入掌握gzip的核心用法,让你的Python程序在处理大数据时如虎添翼。1.gzip模块基础介绍gzi
- 如何在Excel中进行数据透视表的刷新和自动刷新
Excel客旅
1.创建完数据透视表后,如果原始数据有更新,数据透视表也要进行相应的刷新,这样才能保证数据分析的及时性和有效性。如图根据此原始数据已创建好其数据透视表。2.当原始数据有变动,比如学生B2的英语成绩给错了,需要改成65,但是数据透视表里的数据不会自动更新。3.点击数据透视表,在“数据透视表工具”下的“分析”找到“刷新”,点击一下,就可以更新数据了。4.为了防止在更新数据源而忘记及时刷新数据透视表的情
- 代谢组数据分析(二十四):基于tidymass包从质谱原始数据到代谢物注释结果的实践指南
生信学习者1
代谢组数据分析(2025版)数据分析数据挖掘r语言数据可视化
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍加载R包数据准备原始数据处理导入massDataset数据对象交互图数据探索更新样本表格信息峰分布情况缺失值情况数据清洗数据质量评估去除噪声代谢特征过滤立群样本填补缺失值数据标准化和整合预处理后评估代谢物注释增加MS2图谱到数据对象数据库1注释数据库2注释数据库3注释结果统计分析剔除无注释代谢物追踪数据对象的相
- 在无人机中IMU的主要功能是什么?
Yuroo zhou
IMU无人机大数据人工智能嵌入式硬件单片机机器人云计算
IMU作为无人机导航与控制系统的核心部件,其性能直接影响飞行器的姿态稳定性、定位精度与环境适应性。IMU原始数据经滤波融合,解算无人机的实时姿态角(俯仰、横滚、偏航),当无人机进入GNSS信号弱或丢失区域(如城市峡谷、室内环境),IMU可独立维持短时间导航解算,避免无人机失控。ER-MIMU-043IMU凭借其卓越的技术特性,成为无人机领域实现稳定运动控制的关键组件。**实时运动感知**三轴角速度
- 音视频流媒体开发【二十七】ffplay播放器-视频输出和尺寸变换
AlanGe
音视频流媒体开发-目录9视频输出模块ffplay为了适应不同的平台,选择了SDL(跨平台)作为显示的SDK,以便在windows、linux、macos等不同平台上实现视频画⾯的显示。视频(图像)输出初始化视频(图像)输出逻辑问题:*当窗⼝改变⼤⼩时由谁对原始数据(解码后的数据)进⾏缩放当随意改变窗⼝的⼤⼩,为什么视频的宽⾼⽐例还能保持正常9.1视频输出初始化9.1.1视频输出初始化主要流程我们开
- 数据处理实战(含代码)
二向箔reverse
python大数据人工智能机器学习
在当今这个信息爆炸的时代,数据如同空气般无处不在。无论是企业的运营决策、科研人员的研究分析,还是个人的日常决策,都越来越依赖于数据。然而,原始数据往往是杂乱无章、良莠不齐的,就像一堆未经雕琢的璞玉,需要经过精心的处理才能展现其内在的价值。数据处理正是将这堆“璞玉”打磨成“美玉”的过程,它能将混乱的数据转化为有价值的信息,为我们的决策提供有力支持。接下来,就让我们一起走进数据处理的实战世界,探索其中
- 2019-01-23 主成分的数量K
奈何qiao
平均平方映射误差(AverageSquaredProjectionError):PCA就是要将该量最小化。它是原始数据x和映射值x_approx(i)之间的平方差。数据的总变差(TotalVariation):它是这些样本x(i)的长度的平方的均值。一个常见的选择K值的经验法则是选择能够使得它们(平均平方映射误差、数据的总变差)之间的比例小于等于0.01的最小的k值。0.01用PCA的语言说就是保
- 搜索引擎简介
搜索流程架构设计需兼顾海量数据处理能力、低延迟查询响应和结果相关性等。数据采集爬虫系统:从种子URL递归抓取,遵循robots协议(网站通过robots.txt声明哪些内容可抓取),避免违规抓取。数据预处理将原始数据(如HTML网页)转化为结构化、可索引的内容,提升后续索引和检索效率。网页解析与清洗:提取有效内容:从HTML中剥离标签(如),保留文本、标题、摘要、关键词等;排除广告、导航栏等冗余信
- 机器学习实战笔记(四):决策树(Python3 实现)
max_bay
机器学习实战笔记机器学习实战决策树python
1决策树的构造1.1决策树的特点优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。缺点:可能会产生过度匹配问题。适用数据类型:数值型和标称型。在构造决策树时,我们需要解决的第一个问题就是,当前数据集上哪个特征在划分数据分类时起决定性作用。为了找到决定性的特征,划分出最好的结果,我们必须评估每个特征。完成测试之后,原始数据集就被划分为几个数据子集。这些数据子集会分
- Python实现数据自动生成表格:从数据源到可视化表格的完整解决方案
熊猫钓鱼>_>
python开发语言
在现代数据处理和报告生成中,将原始数据转换为结构化、美观的表格是一个常见且重要的需求。无论是生成Excel报表、Word文档中的表格,还是HTML网页表格,自动化的表格生成能够大大提高工作效率,减少人工错误,并确保数据展示的一致性。本文将深入探讨如何使用Python实现数据自动生成表格的完整解决方案,涵盖多种数据源、多种输出格式,以及高级的表格样式和交互功能。目录数据自动生成表格概述技术栈与环境准
- tf.decode_raw
Wanderer001
TensorFlowtensorflow人工智能python
参考tf.decode_raw-云+社区-腾讯云tf.decode_raw函数的意思是将原来编码为字符串类型的变量重新变回来,这个方法在数据集dataset中很常用,因为制作图片源数据一般写进tfrecord里用to_bytes的形式,也就是字符串。这里将原始数据取出来,必须制定原始数据的格式,原始数据是什么格式这里解析必须是什么格式,要不然会出现形状的不对应问题!例如元数据是tf.float64
- 从公共数据到医学研究:32 个生信数据库详解
医工交叉实验工坊
数据库
在生物信息学研究中,高效利用数据库是提升研究效率的关键。本文整理了4类常用的生信数据库,涵盖公共数据、转录调控、植物研究及医学研究领域,包含各数据库的核心功能、网址及实用操作技巧,适合新手快速上手。一、常用公共生信数据库1.GSA数据库GSA数据库被誉为我国自己的“NCBI”,主要用于存储组学原始数据,功能类似NCBI的SRA数据库。主要优势:基于国内服务器,数据上传和下载的网速更快,沟通便捷,必
- 想进大厂?LLMs 10道面试题提前看,有问有答,图文详解!
AI大模型-大飞
人工智能大模型chatgpt产品经理AI程序员大模型面试题
一、微调与优化21、LLM的微调流程是什么?微调(Fine-tuning)LLMs指的是在特定任务或数据上对预训练好的模型进行进一步训练,使其能更好地适应目标场景的过程,其主要流程如下:数据准备:数据收集:根据目标任务收集高质量、有代表性的数据;数据预处理:对原始数据进行清洗,如去除噪声、重复项、不相关内容等。根据模型输入要求对数据进行格式化;数据划分:将数据分为训练集、验证集和测试集,为后续模型
- 用Python爬虫玩转数据可视化(实战向)
文章目录一、先来点有意思的!二、开整!数据抓取部分2.1选个软柿子捏2.2数据提取黑科技三、数据清洗骚操作3.1温度数据大改造3.2风力等级提取四、可视化ShowTime!4.1折线图基础款4.2进阶版热力图4.3动态图表黑科技五、避坑指南(血泪经验)六、还能玩得更花吗?七、完整代码哪里找?八、说点掏心窝的话一、先来点有意思的!你相不相信只需要30行代码,就能把网页上的原始数据变成酷炫的图表?今天
- IDM下载失败排查:解决常见错误,确保稳定高速下载
清水白石008
课程教程学习笔记idm阿里云云计算
IDM下载失败排查:解决常见错误,确保稳定高速下载InternetDownloadManager(IDM)是一款功能强大的下载加速器,但用户在使用过程中可能会遇到下载失败、连接错误或文件损坏等问题。本文将介绍IDM常见下载错误的排查方法,帮助你快速解决问题,恢复稳定高速下载体验。常见IDM下载错误及解决方法1.错误:IDM显示“连接中…”但无法下载可能原因:网络连接不稳定或被防火墙/杀毒软件阻止。
- 如何免费领取百度网盘超级会员?百度云盘超级会员7天领取?百度网盘会员试用领取
氧券导师果果
如何免费领取百度网盘超级会员?百度云盘超级会员7天领取?百度网盘会员试用领取作为一名百度网盘用户,你是否曾因下载速度慢、文件储存空间不足而苦恼?今天,我将为大家带来一个好消息:如何免费领取百度网盘超级会员,让你享受高速下载和更多权益!随着互联网的快速发展,云存储服务变得越来越普及。作为国内领先的云存储平台,百度网盘为广大用户提供便捷的在线存储和分享服务。然而,普通的百度网盘用户在使用过程中,可能会
- 医疗AI跨机构建模实施总结:基于 Flower 联邦学习与差分隐私的实践指南
一、项目背景与目标在医疗人工智能(AI)模型的发展过程中,数据的可获得性和隐私保护始终是两个矛盾的关键点。传统集中式训练方式虽然性能理想,但往往受限于政策法规(如HIPAA、GDPR)无法获取跨机构医疗数据。而单一机构数据量不足、分布偏差等问题,又制约了模型的泛化能力。本项目旨在实现一个可部署、可扩展的联邦学习平台,帮助多个医疗机构在不共享原始数据的前提下共同训练预测模型。我们采用Flower框架
- BI 系统数据看板全解析:让数据可视化驱动业务决策
SickeyLee
产品经理信息可视化数据分析数据挖掘
BI系统数据看板全解析:让数据可视化驱动业务决策在BI系统中,数据看板是连接原始数据与业务洞察的“桥梁”。它将零散的业务指标转化为直观的可视化图表,让产品经理、运营人员等角色能快速把握业务动态。一个设计精良的数据看板,不仅能清晰呈现核心数据,更能引导用户发现问题、洞察趋势。本文将聚焦BI系统数据看板的核心组成,详解综合数据、对比数据、区域分布和收益数据的设计要点,帮你理解如何让数据“说话”。一、数
- BI 系统数据看板全解析:让数据可视化驱动业务决策
SickeyLee
产品经理信息可视化数据分析数据挖掘
BI系统数据看板全解析:让数据可视化驱动业务决策在BI系统中,数据看板是连接原始数据与业务洞察的“桥梁”。它将零散的业务指标转化为直观的可视化图表,让产品经理、运营人员等角色能快速把握业务动态。一个设计精良的数据看板,不仅能清晰呈现核心数据,更能引导用户发现问题、洞察趋势。本文将聚焦BI系统数据看板的核心组成,详解综合数据、对比数据、区域分布和收益数据的设计要点,帮你理解如何让数据“说话”。一、数
- 数据集标准化:软件2.0的基石工程
AI大模型应用之禅
javapythonjavascriptkotlingolang架构人工智能
数据集标准化,软件工程,数据质量,机器学习,人工智能,数据治理,数据可信度1.背景介绍在当今数据爆炸的时代,数据已成为企业和组织的核心资产。然而,海量的原始数据往往杂乱无章,格式不统一,质量参差不齐,这严重阻碍了数据价值的挖掘和应用。数据标准化作为解决这一问题的关键技术,已成为软件2.0时代不可或缺的基石工程。软件2.0时代,人工智能、机器学习等技术蓬勃发展,对数据质量提出了更高的要求。传统的软件
- Postgres中窗口函数lag以lead
午天
it数据库postgrespostgres窗口函数数据库lag函数
sql中我们经常会用到聚合函数,聚合之后它会减少数据量,但是如果我们想把聚合之后的数据和原始数据同时展示出来,那么我们需要用到窗口函数。lag窗口函数通过条件把数据划分成子类,在子类中进行排序窗口函数的通用写法selectname,orderdate,cost,sum(cost)over(partitionbyextract(monthfromorderdate)orderbyorderdate)
- 【扩散模型】正向扩散过程(Forward Diffusion)
爱吃羊的老虎
深度学习生成式模型机器学习人工智能深度学习python
0.Diffusion模型是什么?DiffusionModel(扩散模型)是一类生成模型,可以从随机噪声逐步“还原”出高质量数据(如图像),其核心思想是:正向过程把数据逐步加噪变成纯噪声,反向过程学会从噪声中一步步“去噪”还原出原始数据。正向扩散过程(ForwardDiffusion)输入原始数据(如一张图像x0x_0x0);按照某个“时间步数”t=1,2,...,Tt=1,2,...,Tt=1,
- Spark RDD 之 Partition
博弈史密斯
SparkRDD怎么理解RDD的粗粒度模式?对比细粒度模式SparkRDD的task数量是由什么决定的?一份待处理的原始数据会被按照相应的逻辑(例如jdbc和hdfs的split逻辑)切分成n份,每份数据对应到RDD中的一个Partition,Partition的数量决定了task的数量,影响着程序的并行度支持保存点(checkpoint)虽然RDD可以通过lineage实现faultrecove
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理