- Floyd算法详解——包括解题步骤与编程
HOLD ON!
算法
Floyd算法详解——包括解题步骤与编程SweeNeil展开一、Floyd算法原理Floyd算法是一个经典的动态规划算法,它又被称为插点法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。Floyd算法是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,算法目标是寻找从点i到点j的最短路径。从任意节点i到任意节点j的最短路径不外乎2种
- 最短Hamilton路径
「止于纸扇」
#代码模板C++学习笔记算法数据结构
最短Hamilton路径在图论中,哈密顿路径是指在一个无向图中,经过所有顶点恰好一次且仅一次的路径。在这个问题中,我们将探讨如何在C++中找到给定图中的最短Hamilton路径。原理哈密顿路径问题可以通过动态规划算法求解。动态规划的基本思想是将原问题分解为子问题,然后从最小的子问题开始逐步解决,最终得到原问题的解。对于一个有n个顶点的无向图G(V,E),我们可以使用一个二维数组dp[i][j]来表
- 集训DAY7之线性dp与前缀优化/stl优化
心之所向凉月空
c++开发语言数据结构算法
集训DAY7之线性DP与前缀优化/STL优化目录DP的概念与思想核心DP的题目类型线性DP详解DP的优化策略后记DP的概念与思想核心DP的定义DP也就是动态规划(DynamicProgramming)是求解决策过程最优化的过程动态规划主要用于求解以时间划分阶段的动态过程的优化问题DP的基本思想动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中我们常常需要在多个可行解中寻找最优解,其基本思
- 【牛客刷题HJ16】购物单
the_sunshine6
牛客华为机试动态规划java算法动态规划intellij-idea
目录一、题目描述二、题目分析1、题目理解2、题目分析(1)首先,将物品类准备好(2)然后,对v、p、q进行初始化(3)对动态规划数组进行赋值(填表)三、总结一、题目描述来源:购物单_牛客题霸_牛客网二、题目分析该题类似于0-1背包问题,关于0-1背包请看0-1背包-动态规划算法_哔哩哔哩_bilibili1、题目理解1、购买附件必须买主件,且一个主件最多有两个附件,每件物品只能购买一次;2、每件物
- 动态规划之01背包问题
蓝澈1121
数据结构与算法动态规划算法java
动态规划算法动态规划算法介绍动态规划(DynamicProgramming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法动态规划算法与分治法类似,其基本思想也是将待解决问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解与分治法不同的是,适合于动态规划求解的问题。经分解得到子问题往往不是互相独立的。(即下一个子阶段的求解是建立在上一个子阶段的基
- 动态规划算法详解(C++)
姜太公钓鲸233
算法动态规划c++
动态规划(DynamicProgramming,DP)是一种通过将复杂问题分解为重叠子问题并存储中间结果来优化计算的算法设计方法。其核心思想是避免重复计算,通过空间换时间提高效率。动态规划核心要素重叠子问题问题可以被分解为多个重复出现的子问题(如斐波那契数列)。最优子结构问题的最优解包含其子问题的最优解(如最短路径问题)。状态转移方程定义子问题之间的关系式,描述如何从已知状态推导新状态。动态规划实
- 【老生谈算法】matlab实现动态规划算法源码——动态规划
阿里matlab建模师
matlab算法原理详解matlab算法动态规划
动态规划matlab例程1、文档下载:本算法已经整理成文档如下,有需要的朋友可以点击进行下载序号文档(点击下载)本项目文档【老生谈算法】动态规划matlab例程.docx2、算法详解:待求问题:651713
- MATLAB动态规划算法详解及实例代码动态规划
爱玩三国杀的界徐盛
算法matlab动态规划
动态规划(DynamicProgramming,DP)是解决复杂优化问题的一种高效算法,核心思想是将问题分解为重叠子问题,通过记忆化存储避免重复计算。本文以经典的**0-1背包问题**为例,详细讲解如何在MATLAB中实现动态规划算法,并提供完整代码和解析。一、问题描述:0-1背包问题输入:物品重量`weights=[2,3,4,5]`,物品价值`values=[3,4,5,6]`,背包容量`ca
- 动态规划算法精要与实战技巧
mikes zhang
算法动态规划
动态规划算法深度解析与应用实践一、算法概述动态规划(DynamicProgramming,DP)作为解决复杂决策问题的核心方法,在计算机科学领域已发展超过半个世纪。该算法通过RichardBellman在1953年提出的最优化原理,成功解决了多阶段决策过程中的效率问题。根据ACM最新统计,动态规划在算法竞赛中的使用频率高达32%,位列Top5常用算法之首。本算法主要适用于具有以下特征的问题:最优子
- 动态规划解决0-1背包问题:原理与实现
liberalxl
c++动态规划
引言0-1背包问题是计算机科学中经典的优化问题,也是动态规划算法的典型应用场景。本文将详细介绍如何使用动态规划方法解决0-1背包问题,包括算法原理、实现细节以及个人实践心得。问题描述给定一组物品,每个物品都有重量和价值,在不超过背包承重限制的前提下,如何选择物品装入背包才能使背包中的物品总价值最大?示例:物品数量n=5背包容量c=10重量w=(2,2,6,5,4)价值v=(6,3,5,4,6)动态
- 动态规划入门之硬币问题
有点傻的余
动态规划动态规划硬币问题JAVA算法
动态规划算法通常基于一个递推公式及一个或多个初始状态。当前子问题的解将由上一次子问题的解推出。使用动态规划来解题只需要多项式时间复杂度,因此它比回溯法、暴力法等要快许多。动态规划也是面试笔试题中的一个考查重点,当阅读一个题目并且开始尝试解决它时,首先看一下它的限制。如果要求在多项式时间内解决,那么该问题就很可能要用DP来解。遇到这种情况,最重要的就是找到问题的“状态”和“状态转移方程”。(状态不是
- 机器人路径规划仿真软件:MoveIt!_(16).高级功能:实时路径调整
kkchenjj
机器人仿真机器人自动驾驶模拟仿真机器人仿真
高级功能:实时路径调整实时路径调整的重要性在机器人路径规划中,实时路径调整是一项非常重要的功能。机器人在执行任务时可能会遇到各种动态障碍物或环境变化,这些变化需要机器人能够迅速做出反应并调整其路径。实时路径调整不仅提高了机器人的安全性,还增强了其在复杂环境中的适应能力。在MoveIt!中,实时路径调整可以通过多种方式实现,包括使用传感器数据、动态规划算法和实时避障策略。传感器数据的集成实时路径调整
- 动态规划算法:斐波那契数列模型
我要满血复活
动态规划算法算法动态规划
例题一解法(动态规划)算法流程1.状态表⽰:这道题可以「根据题⽬的要求」直接定义出状态表⽰:dp[i]表⽰:第i个泰波那契数的值。2.状态转移⽅程:题⽬已经⾮常贴⼼的告诉我们了:dp[i]=dp[i-1]+dp[i-2]+dp[i-3]3.初始化:从我们的递推公式可以看出,dp[i]在i=0以及i=1的时候是没有办法进⾏推导的,因为dp[-2]或dp[-1]不是⼀个有效的数据。因此我们需要在填表之
- 动态规划不再难:一步一步教你攻克经典问题 (1)
方博士AI机器人
动态规划算法python0/1背包斐波那切数列
目录1.动态规划算法简介2.动态规划的基本思想3.动态规划的三大关键3.1.重叠子问题3.2.最优子结构3.3.状态转移方程4.动态规划的应用4.1.斐波那契数列4.2.0/1背包问题5.总结1.动态规划算法简介动态规划(DynamicProgramming,简称DP)是一种通过将复杂问题分解成更小的子问题来求解的算法设计方法。它适用于求解具有重叠子问题和最优子结构性质的问题。动态规划通过记录已经
- Java语言常用的算法
TPBoreas
算法java算法开发语言
Java语言常用的算法包括:排序算法:冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序等。查找算法:顺序查找、二分查找、哈希查找等。字符串匹配算法:暴力匹配、KMP算法、Boyer-Moore算法等。图论算法:最短路径算法、最小生成树算法、拓扑排序等。动态规划算法:背包问题、最长公共子序列、最长上升子序列等。贪心算法:最小生成树、单源最短路径等。分治算法:快速排序、归并排序等。网
- 十、动态规划算法学习2(代码随想录学习)
念秋乐晚
算法学习算法动态规划学习
16.目标和leetcode链接思路:将数组分为左右两部分,左边部分为加,右边部分为减。假设左边和为x,右边和即为sum-x。因此target=x-(sum-x),那么x=(target+sum)/2。可将本题转换为求左半部分,即选取部分元素为x的情况总数。写法1:利用二维数组dp[i][j]表示在0-i中选择一些数之和正好为j的情况数初始化:第一行中,dp[0][nums[0]]=1第一列,由于
- 探索 C++ 石子合并问题:算法解析与代码实现
SABL1N
c++算法开发语言
在算法学习的漫漫长路上,石子合并问题是一道极具代表性的经典题目,它不仅考验对动态规划算法思想的理解,还能让我们在实践中提升代码编写与问题解决能力。今天,咱们就借助C++这把利器,深入剖析石子合并问题。一、问题描述假设有N堆石子排成一排,每堆石子有一定数量,记为a1,a2,...,aN。现要将这些石子合并成一堆,每次只能合并相邻的两堆石子,合并这两堆石子的代价是这两堆石子数量之和。问怎样合并才能使总
- 动态规划算法精解(Java实现):从入门到精通
yy鹈鹕灌顶
代理模式
一、动态规划概述动态规划(DynamicProgramming,DP)是一种解决复杂问题的高效算法,通过将问题分解为相互重叠的子问题,并存储子问题的解来避免重复计算。它在众多领域如计算机科学、运筹学、经济学等都有广泛应用,能够显著提升问题的求解效率。核心思想:最优子结构:问题的最优解包含子问题的最优解。这意味着可以通过求解子问题的最优解来得到原问题的最优解。例如,在求解最短路径问题时,从起点到终点
- 动态规划问题 -- 路径模型第一题(不同路径)
繁华落尽,倾城殇?
动态规划算法c++leetcode
目录动态规划分析问题五步曲路径模型常用的分析方法(经验)题目概述代码编写动态规划分析问题五步曲不清楚动态规划分析问题是哪关键的五步的少年们可以移步到链接:动态规划算法基础这篇文章非常详细的介绍了动态规划算法是如何分析和解决问题的路径模型常用的分析方法(经验)路径模型的问题通常会给出一个网格(所以我们的dp表应该开为二维的),我们通常的做法是选择网格中的一个位置然后分析网格周围的元素得出状态表示和状
- Bellman-Ford算法 C++
小超超爱学习9937
算法数据结构学习c++图论
Bellman-Ford算法是一种解决最短路径问题的动态规划算法,该问题是求解从源节点到其他节点的最短路径。与Dijkstra算法不同的是,Bellman-Ford算法可以处理带有负权边的图。该算法的时间复杂度为O(V*E),其中V是节点的数量,E是边的数量。Bellman-Ford算法的原理如下:1.初始化所有节点的距离为无穷大,源节点的距离为0。2.进行V-1次循环,每次循环遍历所有的边,对于
- 动态规划算法:01背包问题(子集问题)
庐阳寒月
数据结构与算法算法动态规划数据结构C++
前言-01背包问题有两个问题:问题1:小明有一个背包,背包容积为v,有m个物品,其中第i个物品的价值为val[i],体积为t[i],每样物品只有一个,请问如何装物品能让背包内的物品价值最大?看过我回溯算法篇章的朋友们应该会有一些思路,这个其实是一个标准的子集问题,我们要从所有物品中挑选出价值最大的若干物品,且要可以装进背包中。(回溯算法(1):子集问题)问题2:小明有一个背包,背包容积为v,有m个
- 动态规划算法:完全背包类问题
庐阳寒月
数据结构与算法算法动态规划数据结构C++
前言现在我们考虑下面的问题:(1)小明有一个背包,背包容积为v,有m种物品,其中第i种物品的价值为val[i],体积为t[i],每样物品有无限个,请问背包内物品总价值最大为多少?(2)小明有若干面值的硬币nums,小明需要买一个物品需要m元,小明想知道自己的硬币能否刚好凑够m元,如果可以,那么需要的最少硬币数量是多少?假设每种面值的硬币数量不做限制。分析这些问题我们发现,后两个问题仅需要一个结果,
- 强化学习笔记(二)
高能阿博特
算法强化学习笔记机器学习
强化学习笔记(二)策略评估预测与控制动态规划马尔可夫决策过程中的策略评估(预测)马尔可夫决策过程控制策略迭代贝尔曼最优方程价值迭代最优性原理定理确认性价值迭代价值迭代算法价值迭代和策略迭代的区别动态规划算法总结表参考书目:蘑菇书,链接蘑菇书本系列笔记仅为个人学习所用,不涉及商业价值策略评估已知马尔可夫决策过程、要采取的策略π\piπ,计算价值函数Vπ(s)V_\pi(s)Vπ(s)的过程就是策略评
- [leetcode]01背包问题
亓才孓
leetcode算法职场和发展
一.问题描述01背包问题是一个经典的组合优化问题,属于动态规划算法的典型应用场景。其问题描述如下:有一个容量为C的背包,以及n个物品,每个物品都有重量w[i]和价值v[i]。要求在有限的背包容量下选择一些物品放入背包,使得放入背包的物品总价值最大,且放入物品的总重量不能超过背包的容量。同时,对于每个物品,只能选择放入背包或者不放入背包,即每个物品只有两种状态,这也是“01”背包名称的由来。例如,有
- LeetCode动态规划之贪心算法
yyistiger
Leetcode算法动态规划贪心算法leetcode
LeetCode动态规划之贪心算法贪心算法可以认为是动态规划算法的一个特例,相比动态规划,使用贪心算法还需要满足【贪心选择性质】什么是贪心选择性质呢,简单说就是:每一步都做出一个局部最优的选择,最终的结果就是全局最优。比如你面前放着100张人民币,你只能拿十张,怎么才能拿最多的面额?显然每次选择剩下钞票中面值最大的一张,最后你的选择一定是最优的。目录LeetCode动态规划之贪心算法55.跳跃游戏
- 贪心算法之活动安排问题
jackson61
贪心算法算法
贪心选择:通过贪心算法做出的每一个选择都是当前状态下局部最好选择,即贪心选择。贪心算法与动态规划算法的差异:贪心选择性质贪心算法的两个性质:(1)贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。(2)最优子结购性质一个问题的最优解包含其子问题的最优解,称为最优子结构性质。1.活动安排问题描述有n个活动,每个活动都要求使用同一资源,如i活动有起始时间si和一个结束
- 贪心算法-最优装载问题C++实现
大王算法
数据结构和算法实战宝典贪心算法c++算法
一、概念当一个问题具有最优结构性质时,可用动态规划算法,有时会有更简单有效的算法,那就是贪心算法,贪心算法是通过一系列的选择来得到问题的解,贪心算法并不从整体最优解上加以考虑,所做的选择只是在某种意义上的局部最优解。二、贪心算法的基本要素(1).贪心选择性质所求解的问题的整体最优解可以通过一系列局部的最优的选择来,即贪心选择达到。贪心选择所依赖的是以前所做过的选择,对以后得选择没有关系。(2).最
- python 动态规划_DP动态规划(Python实现)
weixin_39720807
python动态规划
前言_我们遇到的问题中,有很大一部分可以用动态规划(简称DP)来解。解决这类问题可以很大地提升你的能力与技巧,我会试着帮助你理解如何使用DP来解题。这篇文章是基于实例展开来讲的,因为干巴巴的理论实在不好理解。注意:如果你对于其中某一节已经了解并且不想阅读它,没关系,直接跳过它即可。简介(入门)什么是动态规划,我们要如何描述它?动态规划算法通常基于一个递推公式及一个或多个初始状态。当前子问题的解将由
- python 经典算法之--动态规划算法(Dynamic Programming Algorithm)
魔都霸王东
Python经典算法算法python动态规划
动态规划(DynamicProgramming,简称DP)是一种算法思想,它是求解一类最优化问题的有效工具。它通过将原问题分解为若干子问题,逐个求解子问题的最优解,从而得到原问题的最优解。动态规划算法的核心思想是“最优子结构”和“重叠子问题”。最优子结构:指问题的最优解由其子问题的最优解组合而成。重叠子问题:指在问题分解过程中,许多子问题的解是重复的。动态规划算法的基本步骤:确定状态:将原问题分解
- macOS 使用 enca 识别 文件编码类型(比 file 命令准确)
知识搬运bot
软件工具/使用技巧macosencafileiconv文件编码
文章目录macOS上安装enca基本使用起因-iconv关于enca安装Encaenca&enconv其它用法macOS上安装encabrewinstallenca基本使用encafilepath.txt示例$enca动态规划算法.txt[0]SimplifiedChineseNationalStandard;GB2312CRLFlineterminators起因-iconv在macOS上打开一些
- VMware Workstation 11 或者 VMware Player 7安装MAC OS X 10.10 Yosemite
iwindyforest
vmwaremac os10.10workstationplayer
最近尝试了下VMware下安装MacOS 系统,
安装过程中发现网上可供参考的文章都是VMware Workstation 10以下, MacOS X 10.9以下的文章,
只能提供大概的思路, 但是实际安装起来由于版本问题, 走了不少弯路, 所以我尝试写以下总结, 希望能给有兴趣安装OSX的人提供一点帮助。
写在前面的话:
其实安装好后发现, 由于我的th
- 关于《基于模型驱动的B/S在线开发平台》源代码开源的疑虑?
deathwknight
JavaScriptjava框架
本人从学习Java开发到现在已有10年整,从一个要自学 java买成javascript的小菜鸟,成长为只会java和javascript语言的老菜鸟(个人邮箱:
[email protected])
一路走来,跌跌撞撞。用自己的三年多业余时间,瞎搞一个小东西(基于模型驱动的B/S在线开发平台,非MVC框架、非代码生成)。希望与大家一起分享,同时有许些疑虑,希望有人可以交流下
平台
- 如何把maven项目转成web项目
Kai_Ge
mavenMyEclipse
创建Web工程,使用eclipse ee创建maven web工程 1.右键项目,选择Project Facets,点击Convert to faceted from 2.更改Dynamic Web Module的Version为2.5.(3.0为Java7的,Tomcat6不支持). 如果提示错误,可能需要在Java Compiler设置Compiler compl
- 主管???
Array_06
工作
转载:http://www.blogjava.net/fastzch/archive/2010/11/25/339054.html
很久以前跟同事参加的培训,同事整理得很详细,必须得转!
前段时间,公司有组织中高阶主管及其培养干部进行了为期三天的管理训练培训。三天的课程下来,虽然内容较多,因对老师三天来的课程内容深有感触,故借着整理学习心得的机会,将三天来的培训课程做了一个
- python内置函数大全
2002wmj
python
最近一直在看python的document,打算在基础方面重点看一下python的keyword、Build-in Function、Build-in Constants、Build-in Types、Build-in Exception这四个方面,其实在看的时候发现整个《The Python Standard Library》章节都是很不错的,其中描述了很多不错的主题。先把Build-in Fu
- JSP页面通过JQUERY合并行
357029540
JavaScriptjquery
在写程序的过程中我们难免会遇到在页面上合并单元行的情况,如图所示
如果对于会的同学可能很简单,但是对没有思路的同学来说还是比较麻烦的,提供一下用JQUERY实现的参考代码
function mergeCell(){
var trs = $("#table tr");
&nb
- Java基础
冰天百华
java基础
学习函数式编程
package base;
import java.text.DecimalFormat;
public class Main {
public static void main(String[] args) {
// Integer a = 4;
// Double aa = (double)a / 100000;
// Decimal
- unix时间戳相互转换
adminjun
转换unix时间戳
如何在不同编程语言中获取现在的Unix时间戳(Unix timestamp)? Java time JavaScript Math.round(new Date().getTime()/1000)
getTime()返回数值的单位是毫秒 Microsoft .NET / C# epoch = (DateTime.Now.ToUniversalTime().Ticks - 62135
- 作为一个合格程序员该做的事
aijuans
程序员
作为一个合格程序员每天该做的事 1、总结自己一天任务的完成情况 最好的方式是写工作日志,把自己今天完成了什么事情,遇见了什么问题都记录下来,日后翻看好处多多
2、考虑自己明天应该做的主要工作 把明天要做的事情列出来,并按照优先级排列,第二天应该把自己效率最高的时间分配给最重要的工作
3、考虑自己一天工作中失误的地方,并想出避免下一次再犯的方法 出错不要紧,最重
- 由html5视频播放引发的总结
ayaoxinchao
html5视频video
前言
项目中存在视频播放的功能,前期设计是以flash播放器播放视频的。但是现在由于需要兼容苹果的设备,必须采用html5的方式来播放视频。我就出于兴趣对html5播放视频做了简单的了解,不了解不知道,水真是很深。本文所记录的知识一些浅尝辄止的知识,说起来很惭愧。
视频结构
本该直接介绍html5的<video>的,但鉴于本人对视频
- 解决httpclient访问自签名https报javax.net.ssl.SSLHandshakeException: sun.security.validat
bewithme
httpclient
如果你构建了一个https协议的站点,而此站点的安全证书并不是合法的第三方证书颁发机构所签发,那么你用httpclient去访问此站点会报如下错误
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path bu
- Jedis连接池的入门级使用
bijian1013
redisredis数据库jedis
Jedis连接池操作步骤如下:
a.获取Jedis实例需要从JedisPool中获取;
b.用完Jedis实例需要返还给JedisPool;
c.如果Jedis在使用过程中出错,则也需要还给JedisPool;
packag
- 变与不变
bingyingao
不变变亲情永恒
变与不变
周末骑车转到了五年前租住的小区,曾经最爱吃的西北面馆、江西水饺、手工拉面早已不在,
各种店铺都换了好几茬,这些是变的。
三年前还很流行的一款手机在今天看起来已经落后的不像样子。
三年前还运行的好好的一家公司,今天也已经不复存在。
一座座高楼拔地而起,
- 【Scala十】Scala核心四:集合框架之List
bit1129
scala
Spark的RDD作为一个分布式不可变的数据集合,它提供的转换操作,很多是借鉴于Scala的集合框架提供的一些函数,因此,有必要对Scala的集合进行详细的了解
1. 泛型集合都是协变的,对于List而言,如果B是A的子类,那么List[B]也是List[A]的子类,即可以把List[B]的实例赋值给List[A]变量
2. 给变量赋值(注意val关键字,a,b
- Nested Functions in C
bookjovi
cclosure
Nested Functions 又称closure,属于functional language中的概念,一直以为C中是不支持closure的,现在看来我错了,不过C标准中是不支持的,而GCC支持。
既然GCC支持了closure,那么 lexical scoping自然也支持了,同时在C中label也是可以在nested functions中自由跳转的
- Java-Collections Framework学习与总结-WeakHashMap
BrokenDreams
Collections
总结这个类之前,首先看一下Java引用的相关知识。Java的引用分为四种:强引用、软引用、弱引用和虚引用。
强引用:就是常见的代码中的引用,如Object o = new Object();存在强引用的对象不会被垃圾收集
- 读《研磨设计模式》-代码笔记-解释器模式-Interpret
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 解释器(Interpreter)模式的意图是可以按照自己定义的组合规则集合来组合可执行对象
*
* 代码示例实现XML里面1.读取单个元素的值 2.读取单个属性的值
* 多
- After Effects操作&快捷键
cherishLC
After Effects
1、快捷键官方文档
中文版:https://helpx.adobe.com/cn/after-effects/using/keyboard-shortcuts-reference.html
英文版:https://helpx.adobe.com/after-effects/using/keyboard-shortcuts-reference.html
2、常用快捷键
- Maven 常用命令
crabdave
maven
Maven 常用命令
mvn archetype:generate
mvn install
mvn clean
mvn clean complie
mvn clean test
mvn clean install
mvn clean package
mvn test
mvn package
mvn site
mvn dependency:res
- shell bad substitution
daizj
shell脚本
#!/bin/sh
/data/script/common/run_cmd.exp 192.168.13.168 "impala-shell -islave4 -q 'insert OVERWRITE table imeis.${tableName} select ${selectFields}, ds, fnv_hash(concat(cast(ds as string), im
- Java SE 第二讲(原生数据类型 Primitive Data Type)
dcj3sjt126com
java
Java SE 第二讲:
1. Windows: notepad, editplus, ultraedit, gvim
Linux: vi, vim, gedit
2. Java 中的数据类型分为两大类:
1)原生数据类型 (Primitive Data Type)
2)引用类型(对象类型) (R
- CGridView中实现批量删除
dcj3sjt126com
PHPyii
1,CGridView中的columns添加
array(
'selectableRows' => 2,
'footer' => '<button type="button" onclick="GetCheckbox();" style=&
- Java中泛型的各种使用
dyy_gusi
java泛型
Java中的泛型的使用:1.普通的泛型使用
在使用类的时候后面的<>中的类型就是我们确定的类型。
public class MyClass1<T> {//此处定义的泛型是T
private T var;
public T getVar() {
return var;
}
public void setVa
- Web开发技术十年发展历程
gcq511120594
Web浏览器数据挖掘
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- openSession()与getCurrentSession()区别:
hetongfei
javaDAOHibernate
来自 http://blog.csdn.net/dy511/article/details/6166134
1.getCurrentSession创建的session会和绑定到当前线程,而openSession不会。
2. getCurrentSession创建的线程会在事务回滚或事物提交后自动关闭,而openSession必须手动关闭。
这里getCurrentSession本地事务(本地
- 第一章 安装Nginx+Lua开发环境
jinnianshilongnian
nginxluaopenresty
首先我们选择使用OpenResty,其是由Nginx核心加很多第三方模块组成,其最大的亮点是默认集成了Lua开发环境,使得Nginx可以作为一个Web Server使用。借助于Nginx的事件驱动模型和非阻塞IO,可以实现高性能的Web应用程序。而且OpenResty提供了大量组件如Mysql、Redis、Memcached等等,使在Nginx上开发Web应用更方便更简单。目前在京东如实时价格、秒
- HSQLDB In-Process方式访问内存数据库
liyonghui160com
HSQLDB一大特色就是能够在内存中建立数据库,当然它也能将这些内存数据库保存到文件中以便实现真正的持久化。
先睹为快!
下面是一个In-Process方式访问内存数据库的代码示例:
下面代码需要引入hsqldb.jar包 (hsqldb-2.2.8)
import java.s
- Java线程的5个使用技巧
pda158
java数据结构
Java线程有哪些不太为人所知的技巧与用法? 萝卜白菜各有所爱。像我就喜欢Java。学无止境,这也是我喜欢它的一个原因。日常
工作中你所用到的工具,通常都有些你从来没有了解过的东西,比方说某个方法或者是一些有趣的用法。比如说线程。没错,就是线程。或者确切说是Thread这个类。当我们在构建高可扩展性系统的时候,通常会面临各种各样的并发编程的问题,不过我们现在所要讲的可能会略有不同。
- 开发资源大整合:编程语言篇——JavaScript(1)
shoothao
JavaScript
概述:本系列的资源整合来自于github中各个领域的大牛,来收藏你感兴趣的东西吧。
程序包管理器
管理javascript库并提供对这些库的快速使用与打包的服务。
Bower - 用于web的程序包管理。
component - 用于客户端的程序包管理,构建更好的web应用程序。
spm - 全新的静态的文件包管
- 避免使用终结函数
vahoa.ma
javajvmC++
终结函数(finalizer)通常是不可预测的,常常也是很危险的,一般情况下不是必要的。使用终结函数会导致不稳定的行为、更差的性能,以及带来移植性问题。不要把终结函数当做C++中的析构函数(destructors)的对应物。
我自己总结了一下这一条的综合性结论是这样的:
1)在涉及使用资源,使用完毕后要释放资源的情形下,首先要用一个显示的方