1.Def: A declarative sentence that is either true or false ,but not both.
ex1: x+1=2
Sol: This is not a proposition, cuz when x=1,it’s true while other x makes it false.
2.propositional variables : letters like (p,q,r,s) can denote a propositon
1.negation operator: ¬ \neg ¬
2.conjunction: ∧ \land ∧
3.disjunction ∨ \lor ∨
can be divided into [ exclusive OR and inclusive OR]
exclusive or , either q or p can be true ,but not both
inclusive or , either q or p be true ,and namely they can both be true
4.conditional statement: → \to →
ways to express implication
if p then q ; p implies q ; if p ,q ; p only if q ; p is sufficient for q;
q is necessary for p ; q if p ; q whenever p ; q unless ¬ \neg ¬ p
p only if q may be the most confusing one:
note that p only if q says that p cannot be true when q is not true.That is when p is true ,q is false the statement is wrong. When p is false whatevear q is true ,cuz the statement only cares about the truth value of p.
5.bioconditionals: ↔ \leftrightarrow ↔
common ways to express it
p is necessary and sufficient for q ; if p then q and conversely;
p if and only if q plus the abbreviation ‘iff’ which can denote only and only if .
Operator | Precedence |
---|---|
¬ \neg ¬ | 1 |
∧ \land ∧ | 2 |
∨ \lor ∨ | 3 |
→ \to → | 4 |
↔ \leftrightarrow ↔ | 5 |
converse of p → \to →q : q → \to →p
inverse of p → \to →q: ¬ \neg ¬p → ¬ \to\neg →¬q
contrastive of p → \to →q: ¬ \neg ¬q → \to → ¬ \neg ¬q
The contrastive of a statement is equivalent to itself.
OR AND XOR
Both Title 2 & 3 can be solved by using truth table
Def : a compound proposition that is always true , no matter what the truth value of the propositional variables involved in , is called a tautology .
The other proposition which is always false is called contradiction.
(1)Def : if p ↔ \leftrightarrow ↔ q is a tautology , then notation p ≡ \equiv ≡q denotes that p and q are logically equivalent.
(2)ways of proving logical equivalence :
i.truth table : if and only if the truth table agrees can prove
Be care that n variables need a 2^n truth table
ii.logical reasoning : by using the proved logical equivalent to prove the unknown one.
(3) important logical equivalance
i. Identity law
p ∧ \land ∧T ≡ \equiv ≡p
p ∨ \lor ∨F ≡ \equiv ≡p
ii.Domination law
p ∨ \lor ∨T ≡ \equiv ≡T
p ∧ \land ∧F ≡ \equiv ≡F
iii.Indepotent law
p ∧ \land ∧p ≡ \equiv ≡p
p ∨ \lor ∨p ≡ \equiv ≡p
iv.Double negation law
¬ ¬ \neg\neg ¬¬p ≡ \equiv ≡p
v.Commutative laws
p ∨ \lor ∨q ≡ \equiv ≡q ∨ \lor ∨p
p ∧ \land ∧q ≡ \equiv ≡q ∧ \land ∧p
vi.Associative laws
(p ∧ \land ∧q) ∧ \land ∧r ≡ \equiv ≡p ∧ \land ∧(q ∧ \land ∧r)
(p ∨ \lor ∨q) ∨ \lor ∨r ≡ \equiv ≡p ∨ \lor ∨(q ∨ \lor ∨r)
vii.Distributive laws
p ∧ \land ∧(q ∨ \lor ∨r) ≡ \equiv ≡(p ∧ \land ∧q) ∨ \lor ∨(p ∧ \land ∧r)
p ∨ \lor ∨(q ∧ \land ∧r) ≡ \equiv ≡(p ∨ \lor ∨q) ∧ \land ∧(p ∨ \lor ∨r)
viii.De morgan’s laws
¬ \neg ¬(p ∨ \lor ∨q) ≡ \equiv ≡ ¬ \neg ¬p ∧ \land ∧ ¬ \neg ¬q
¬ \neg ¬(p ∧ \land ∧q) ≡ \equiv ≡ ¬ \neg ¬p ∨ \lor ∨ ¬ \neg ¬q
ix.Absorption laws
p ∨ \lor ∨(p ∧ \land ∧q) ≡ \equiv ≡p
p ∧ \land ∧(p ∨ \lor ∨q) ≡ \equiv ≡p
x.Negation laws
p ∧ \land ∧ ¬ \neg ¬p ≡ \equiv ≡F
p ∨ \lor ∨ ¬ \neg ¬p ≡ \equiv ≡T
Conditional logic equivalence
xi.
p → \to →q ≡ \equiv ≡ ¬ \neg ¬p ∨ \lor ∨q
xii.
p → q ≡ ¬p ∨ q
xiii.
p → q ≡ ¬q → ¬p
xiv.
p ∨ q ≡ ¬p → q
xv.
p ∧ q ≡ ¬(p → ¬q)
xvi.
¬(p → q) ≡ p ∧ ¬q
xvii.
(p → q) ∧ (p → r) ≡ p → (q ∧ r)
(p → r) ∧ (q → r) ≡ (p ∨ q) → r
(p → q) ∨ (p → r) ≡ p → (q ∨ r)
(p → r) ∨ (q → r) ≡ (p ∧ q) → r
Bioconditional equivalence
xviii.
p ↔ q ≡ (p → q) ∧ (q → p)
xix.
p ↔ q ≡ ¬p ↔ ¬q
xx.
p ↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)
xxi.
¬(p ↔ q) ≡ p ↔ ¬q
We can use the notation Vnj=1pj for p1V p2 V p3 V…V pn
and ∧ \land ∧nj=1 as well.