- YOLO11-obb使用C++及trt进行推理(详细版)
范男
c++目标检测计算机视觉YOLO图像处理
针对YOLO的使用.engine权重及C++代码进行推理使用TensorRT-YOLO项目网站是:https://github.com/laugh12321/TensorRT-YOLO可以直接选择git或者下载下来gitclonehttps://github.com/laugh12321/TensorRT-YOLOcdTensorRT-YOLO1.编译主程序教程网址是:https://github
- 机器学习专栏(62):手把手实现工业级ResNet-34及调优全攻略
目录一、ResNet革命性突破解析1.1残差学习核心思想1.2ResNet-34结构详解二、工业级Keras实现详解2.1数据预处理流水线2.2完整模型实现三、模型训练调优策略3.1学习率动态调整3.2混合精度训练四、性能优化技巧4.1分布式训练配置4.2TensorRT推理加速五、实战应用案例5.1医疗影像分类5.2工业质检系统六、模型可视化分析6.1特征热力图6.2参数量分析七、常见问题解决方
- 英伟达Triton 推理服务详解
leo0308
基础知识机器人Triton人工智能
1.TritonInferenceServer简介TritonInferenceServer(简称Triton,原名NVIDIATensorRTInferenceServer)是英伟达推出的一个开源、高性能的推理服务器,专为AI模型的部署和推理服务而设计。它支持多种深度学习框架和硬件平台,能够帮助开发者和企业高效地将AI模型部署到生产环境中。Triton主要用于模型推理服务化,即将训练好的模型通过
- 模型实战(21)之 C++ - tensorRT部署yolov8-det 目标检测
明月醉窗台
#深度学习实战例程人工智能c++YOLO目标检测计算机视觉人工智能
C++-tensorRT部署yolov8-det目标检测python环境下如何直接调用推理模型转换并导出:pt->onnx->.engineC++tensorrt部署检测模型不写废话了,直接上具体实现过程+all代码1.Python环境下推理直接命令行推理,巨简单yolodetectpredictmodel=yolov8n.ptsource='https
- 【深度学习】大模型GLM-4-9B Chat ,微调与部署(3) TensorRT-LLM、TensorRT量化加速、Triton部署
XD742971636
深度学习机器学习深度学习人工智能
文章目录获取TensorRT-LLM代码:构建docker镜像并安装TensorRT-LLM:运行docker镜像:安装依赖魔改下部分package代码:量化:构建图:全局参数插件配置常用配置参数测试推理是否可以代码推理CLI推理性能测试小结验证是否严重退化使用NVIDIATriton部署在线推理服务器代码弄下来编译镜像启动容器安装依赖量化构建trtengines图Triton模板说明实操发起Tr
- Jetson Orin NX Super安装TensorRT-LLM
u013250861
#LLM/部署&推理elasticsearch大数据搜索引擎
根据图片中显示的JetsonOrinNXSuper系统环境(JetPack6.2+CUDA12.6+TensorRT10.7),以下是针对该平台的TensorRT-LLM安装优化方案:一、环境适配调整基于你的实际配置:JetPack6.2(含CUDA12.6,TensorRT10.7)Python3.10.12aarch64架构需选择适配的TensorRT-LLM版本。由于官方预编译包可能未覆盖此
- TensorRT-LLM:大模型推理加速引擎的架构与实践
前言:技术背景与发展历程:随着GPT-4、LLaMA等千亿级参数模型的出现,传统推理框架面临三大瓶颈:显存占用高(单卡可达80GB)、计算延迟大(生成式推理需迭代处理)、硬件利用率低(Transformer结构存在计算冗余)。根据MLPerf基准测试,原始PyTorch推理的token生成速度仅为12.3tokens/s(A100显卡)。一、TensorRT-LLM介绍:TensorRT-LLM是
- 【TensorRT】TensorRT及加速原理
浩瀚之水_csdn
tensorrt
一、TensorRT架构概览TensorRT是NVIDIA推出的高性能推理优化器,专为GPU加速设计。其核心架构分为三层:前端解析器支持ONNX/UFF/Caffe等格式的模型解析执行格式验证和初步结构优化优化引擎核心优化层(层融合、精度校准、内存优化等)生成优化后的计算图(OptimizedGraph)运行时环境管理GPU内存分配执行优化后的计算图二、核心加速原理(8大关键技术)1.层融合(La
- 使用numpy或pytorch校验两个张量是否相等
文章目录1、numpy2、pytorch做算法过程中,如果涉及到模型落地,那必然会将原始的深度学习的框架训练好的模型转换成目标硬件模型的格式,如onnx,tensorrt,openvino,tflite;那么就有对比不同格式模型输出的一致性,从而判断模型转换是否成功。1、numpy用到的核心代码就一行,就是:importnumpyasnpnp.testing.assert_allclose(act
- YOLOV10的tensorrt C++部署
dddccc1234
YOLO
根据博客进行python版本安装YOLOv10最全使用教程(含ONNX和TensorRT推理)-CSDN博客并将pt转为onnx:yoloexportmodel=yolov10s.ptformat=onnxopset=13simplify然后采用:https://github.com/hamdiboukamcha/yolov10-tensorrt.git进行c++编译配置好cuda11.7tens
- tensorRT 与 torchserve-GPU性能对比
joker-G
计算机视觉pytorchpython
实验对比前端时间搭建了TensorRT、Torchserve-GPU,最近抽时间将这两种方案做一个简单的实验对比。实验数据Cuda11.0、Xeon®62423.1*80、RTX309024G、Resnet50TensorRT、Torchserve-GPU各自一张卡搭建10进程接口,感兴趣的可以查看我个人其他文章。30进程并发、2000张1200*720像素图像的总量数据TensorRT的部署使用
- YOLOv8模型在RDK5开发板上的部署指南:.pt到.bin转换与优化实践
pk_xz123456
python算法仿真模型YOLO人工智能rnn深度学习开发语言lstm
以下是针对在RDK5开发板(基于NVIDIAJetsonOrin平台)部署YOLOv8模型的详细技术指南,涵盖从模型转换、优化到部署的全流程:YOLOv8模型在RDK5开发板上的部署指南:.pt到.bin转换与优化实践——基于TensorRT的高性能嵌入式部署方案第一章:技术背景与核心概念1.1RDK5开发板硬件架构NVIDIAJetsonOrinNX核心参数:1024-coreAmpereGPU
- Pytorch模型安卓部署
python&java
pytorch人工智能python
Pytorch是一种流行的深度学习框架,用于算法开发,而Android是一种广泛应用的操作系统,多应用于移动设备当中。目前多数的研究都是在于算法上,个人觉得把算法落地是一件很有意思的事情,因此本人准备分享一些模型落地的文章(后续可能分享微信小程序部署,PyQt部署以及exe打包,ncnn部署,tensorRT部署,MNN部署)。本篇文章主要分享Pytorch的Android端部署。看这篇文章的读者
- 昇腾AI生态组件全解析:与英伟达生态的深度对比
随着人工智能技术的快速发展,国产AI芯片的崛起正在改变全球计算产业的格局。华为昇腾(Ascend)系列AI处理器凭借自主创新的达芬奇架构,构建了完整的软硬件生态体系。本文将从核心组件对比、显卡性能对标两个维度,深入剖析昇腾与英伟达(NVIDIA)生态的技术差异与适用场景。一、昇腾核心组件与英伟达对标分析1.推理引擎:MindIEvsTensorRT昇腾MindIE1.0.0基于昇腾芯片的深度学习推
- 【推理加速】TensorRT C++ 部署YOLO11全系模型
gloomyfish
c++开发语言
YOLO11YOLO11C++推理YOLO11是Ultralytics最新发布的目标检测、实例分割、姿态评估的系列模型视觉轻量化框架,基于前代YOLO8版本进行了多项改进和优化。YOLO11在特征提取、效率和速度、准确性以及环境适应性方面都有显著提升,达到SOTA。TensorRTC++SDK最新版本的TensorRT10.x版本已经修改了推理的接口函数与查询输入输出层的函数,其中以YOLO11对
- Java全栈AI平台实战:从模型训练到部署的革命性突破——Spring AI+Deeplearning4j+TensorFlow Java API深度解析
墨夶
Java学习资料3java人工智能spring
一、背景与需求:为什么需要Java驱动的AI平台?某医疗影像公司面临以下挑战:多语言开发混乱:Python训练模型,C++部署推理,Java调用服务,导致维护成本高昂部署效率低下:PyTorch模型需手动转换ONNX格式,TensorRT优化耗时2小时/模型实时性不足:视频流分析延迟达3秒,无法满足急诊场景需求通过Java全栈AI平台,我们实现了:端到端开发:Java调用PyTorch训练模型,直
- 【Bug】Could not locate zlibwapi.dll. Please make sure it is in your library path!
报错信息:使用tensort加速,cmake编译失败,提示缺少zlibwapi.dll文件Couldnotlocatezlibwapi.dll.Pleasemakesureitisinyourlibrarypath!解决方案:从以下链接下载zlibwapi.dllhttp://www.winimage.com/zLibDll/我是在windows10系统下进行的TensorRT加速下载得到的压缩包
- win10安装wsl2(ubuntu20.04)并安装 TensorRT-8.6.1.6、cuda_11.6、cudnn
狄龙疤
wslwsl2win10tensorrtcudacudnnubuntu
参考博客:1.CUDA】如何在windows上安装Ollama3+openwebui(docker+WSL2+ubuntu+nvidia-container):https://blog.csdn.net/smileyan9/article/details/1403916672.在Windows10上安装WSL2:https://download.csdn.net/blog/column/10991
- 【代码分析】TensorRT sampleINT8 详解
HaoBBNuanMM
目录前言代码分析Main入口构建(Build)网络BatchStream推理(Infer)过程资源释放前言TensorRT可以通过INT8量化处理网络,然后大幅加速网络推理速度,本文旨在详细分析MNISTINT8Sample的代码,解释如何使用TensorRT对网络做INT8量化处理。关于INT8量化的背景知识可以参考博文TensorRTINT8校准与量化原理代码分析sampleINT8的gith
- TensorRT × TVM 联合优化实战:多架构异构平台的统一推理加速与性能调优全流程
观熵
大模型高阶优化技术专题架构人工智能
TensorRT×TVM联合优化实战:多架构异构平台的统一推理加速与性能调优全流程关键词TensorRT、TVM、异构推理优化、跨平台部署、GPU加速、NPU融合、自动调度、深度学习推理引擎、性能调优摘要在深度学习模型推理部署场景中,面对GPU、NPU、CPU等多架构异构平台的并存,如何实现统一的高性能推理优化成为企业工程落地的关键挑战。本文聚焦TensorRT与TVM的联合优化策略,从平台结构适
- retinaface在ubuntu20.04(wsl2)下使用tensorrt(c++)部署
狄龙疤
c++retinafacetensorrtcudaopencv人脸识别神经网络模型
1.参考博客:1.RetinafaceTensorrtPython/C++部署:https://blog.csdn.net/weixin_45747759/article/details/1245340792.B站视频教程:https://www.bilibili.com/video/BV1Nv4y1K727/3.Retinaface_Tensorrtgithub仓库:https://github
- 独家首发!低照度环境下YOLOv8的增强方案——从理论到TensorRT部署
向哆哆
YOLO架构yolov8
文章目录引言一、低照度图像增强技术现状1.1传统低照度增强方法局限性1.2深度学习-based方法进展二、Retinexformer网络原理2.1Retinex理论回顾2.2Retinexformer创新架构2.2.1光照感知Transformer2.2.2多尺度Retinex分解2.2.3自适应特征融合三、YOLOv8-Retinexformer实现3.1网络架构修改3.2联合训练策略四、实验与
- win10 环境进行 python + pytorch + yolov8 + tensorRT( c++版 ) 测试过程记录
狄龙疤
pythonpytorchc++cudatensorRTyolov8计算机视觉
参考博客:1.YOLOv8模型转换pt->onnx(附上代码):https://blog.csdn.net/2303_80018785/article/details/1381949612.yolov8的TensorRT部署(C++版本):https://blog.csdn.net/liujiahao123987/article/details/133892746test.cpp就是使用此博客的d
- 【实战分享】TensorRT+LLM:大模型推理性能优化初探
fengbeely
java
TensorRT-LLM初体验千呼万唤始出来,备受期待的Tensorrt-LLM终于发布,发布版本0.5.0。github:https://github.com/NVIDIA/TensorRT-LLM/tree/main1.介绍TensorRT-LLM可以视为TensorRT和FastTransformer的结合体,旨为大模型推理加速而生。1.1丰富的优化特性除了FastTransformer对T
- NIPS-2013《Distributed PCA and $k$-Means Clustering》
Christo3
机器学习kmeans算法大数据人工智能
推荐深蓝学院的《深度神经网络加速:cuDNN与TensorRT》,课程面向就业,细致讲解CUDA运算的理论支撑与实践,学完可以系统化掌握CUDA基础编程知识以及TensorRT实战,并且能够利用GPU开发高性能、高并发的软件系统,感兴趣可以直接看看链接:深蓝学院《深度神经网络加速:cuDNN与TensorRT》核心思想该论文的核心思想是将主成分分析(PCA)与分布式kkk-均值聚类相结合,提出一种
- NVIDIA 实现通义千问 Qwen3 的生产级应用集成和部署【2025年 5月 2日】
u013250861
#LLM/部署&推理jetson
阿里巴巴近期发布了其开源的混合推理大语言模型(LLM)通义千问Qwen3,此次Qwen3开源模型系列包含两款混合专家模型(MoE)235B-A22B(总参数2,350亿,激活参数220亿)和30B-A3B,以及六款稠密(Dense)模型0.6B、1.7B、4B、8B、14B、32B。现在,开发者能够基于NVIDIAGPU,使用NVIDIATensorRT-LLM、Ollama、SGLang、vLL
- YOLO学习笔记 | YOLO11对象检测,实例分割,姿态评估的TensorRT部署c++
单北斗SLAMer
YOLO学习从零到1YOLO机器学习深度学习c++python
以下是YOLOv11在TensorRT上部署的步骤指南,涵盖对象检测、实例分割和姿态评估:1.模型导出与转换1.1导出ONNX模型importtorchfrommodels.experimentalimportattempt_loadmodel=attempt_load('yolov11s.pt',fuse=True)model.eval
- ✅ TensorRT Python 安装精简流程(适用于 Ubuntu 20.04+)
dbcccccsds
pythonubuntu开发语言
安装TensorRTPython轮子的步骤确保pip和wheel模块已更新并安装:参考链接python3-mpipinstall--upgradepippython3-mpipinstallwheel1.确认环境要求Python:版本3.8-3.13OS:Ubuntu20.04+或Windows10+CPU:x86_64或ARMSBSA架构安装前确保pip、wheel是最新的:python3-mp
- TensorRT-LLM——优化大型语言模型推理以实现最大性能的综合指南
知来者逆
LLM语言模型人工智能自然语言处理TensorRTLLM大语言模型深度学习
引言随着对大型语言模型(LLM)的需求不断增长,确保快速、高效和可扩展的推理变得比以往任何时候都更加重要。NVIDIA的TensorRT-LLM通过提供一套专为LLM推理设计的强大工具和优化,TensorRT-LLM可以应对这一挑战。TensorRT-LLM提供了一系列令人印象深刻的性能改进,例如量化、内核融合、动态批处理和多GPU支持。这些改进使推理速度比传统的基于CPU的方法快8倍,从而改变了
- tensorrt部署yolov8
张张张子
YOLOpython边缘计算
记录一下部署过程遇到的问题,我是要再jstson上部署,首先导出onnx文件,没什么问题,然后又两种方案转为engine文件1:trtexec.exe--onnx=best.onnx--saveEngine=best.engine--fp16tensorrt库命令转换,过程中会遇到一些问题,这里不细讲了,可以查。2:用yolov8官方版本转换,较为容易,官方库写的比较好最后会得到trt文件或eng
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的