目录
一、ResNet革命性突破解析
1.1 残差学习核心思想
1.2 ResNet-34结构详解
二、工业级Keras实现详解
2.1 数据预处理流水线
2.2 完整模型实现
三、模型训练调优策略
3.1 学习率动态调整
3.2 混合精度训练
四、性能优化技巧
4.1 分布式训练配置
4.2 TensorRT推理加速
五、实战应用案例
5.1 医疗影像分类
5.2 工业质检系统
六、模型可视化分析
6.1 特征热力图
6.2 参数量分析
七、常见问题解决方案
7.1 梯度消失诊断
7.2 显存优化策略
八、扩展应用方向
8.1 知识蒸馏
8.2 自监督预训练
九、性能基准测试
9.1 硬件平台对比
9.2 模型压缩效果
附录:ResNet-34调试速查表
class EnhancedResidualUnit(keras.layers.Layer):
def __init__(self, filters, strides=1, expansion=4):
super().__init__()
self.conv1 = keras.layers.Conv2D(filters//expansion, 1, strides=strides)
self.bn1 = keras.layers.BatchNormalization()
self.conv2 = keras.layers.Conv2D(filters//expansion, 3, padding='same')
self.bn2 = keras.layers.BatchNormalization()
self.conv3 = keras.layers.Conv2D(filters, 1)
self.bn3 = keras.layers.BatchNormalization()
self.shortcut = self._build_shortcut(filters, strides)
def _build_shortcut(self, filters, strides):
return keras.Sequential([
keras.layers.Conv2D(filters, 1, strides=strides),
keras.layers.BatchNormalization()
]) if strides > 1 else lambda x: x
def call(self, inputs):
x = keras.activations.relu(self.bn1(self.conv1(inputs)))
x = keras.activations.relu(self.bn2(self.conv2(x)))
x = self.bn3(self.conv3(x))
shortcut = self.shortcut(inputs)
return keras.activations.relu(x + shortcut)
Stage | Layer Type | Output Size | Filter Size/Stride | Repeat |
---|---|---|---|---|
Conv1 | 7x7 Conv | 112x112x64 | 7x7, stride 2 | 1 |
Conv2 | 3x3 MaxPool | 56x56x64 | 3x3, stride 2 | 1 |
Conv3 | Residual Block | 56x56x64 | [3x3, 3x3] | 3 |
Conv4 | Residual Block | 28x28x128 | [3x3, 3x3] stride 2 | 4 |
Conv5 | Residual Block | 14x14x256 | [3x3, 3x3] stride 2 | 6 |
Conv6 | Residual Block | 7x7x512 | [3x3, 3x3] stride 2 | 3 |
Final | Global Average Pool | 1x1x512 | - | 1 |
def build_augmentation_pipeline():
return keras.Sequential([
layers.Rescaling(1./255),
layers.RandomFlip("horizontal"),
layers.RandomRotation(0.1),
layers.RandomZoom(0.2),
layers.RandomContrast(0.1),
layers.GaussianNoise(0.1)
])
train_ds = keras.preprocessing.image_dataset_from_directory(
"data/train",
image_size=(224, 224),
batch_size=32,
label_mode='categorical'
).map(lambda x, y: (build_augmentation_pipeline()(x), y))
def build_resnet34(input_shape=(224,224,3), num_classes=1000):
inputs = keras.Input(shape=input_shape)
x = layers.Conv2D(64, 7, strides=2, padding="same")(inputs)
x = layers.BatchNormalization()(x)
x = layers.Activation("relu")(x)
x = layers.MaxPool2D(3, strides=2, padding="same")(x)
filters_list = [(64, 1), (128, 2), (256, 2), (512, 2)]
repeat_counts = [3, 4, 6, 3]
for (filters, stride), repeats in zip(filters_list, repeat_counts):
for i in range(repeats):
x = ResidualUnit(filters, stride if i == 0 else 1)(x)
x = layers.GlobalAvgPool2D()(x)
x = layers.Dense(num_classes, activation="softmax")(x)
return keras.M