机器学习专栏(62):手把手实现工业级ResNet-34及调优全攻略

目录

一、ResNet革命性突破解析

1.1 残差学习核心思想

1.2 ResNet-34结构详解

二、工业级Keras实现详解

2.1 数据预处理流水线

2.2 完整模型实现

三、模型训练调优策略

3.1 学习率动态调整

3.2 混合精度训练

四、性能优化技巧

4.1 分布式训练配置

4.2 TensorRT推理加速

五、实战应用案例

5.1 医疗影像分类

5.2 工业质检系统

六、模型可视化分析

6.1 特征热力图

6.2 参数量分析

七、常见问题解决方案

7.1 梯度消失诊断

7.2 显存优化策略

八、扩展应用方向

8.1 知识蒸馏

8.2 自监督预训练

九、性能基准测试

9.1 硬件平台对比

9.2 模型压缩效果

附录:ResNet-34调试速查表


一、ResNet革命性突破解析

1.1 残差学习核心思想

class EnhancedResidualUnit(keras.layers.Layer):
    def __init__(self, filters, strides=1, expansion=4):
        super().__init__()
        self.conv1 = keras.layers.Conv2D(filters//expansion, 1, strides=strides)
        self.bn1 = keras.layers.BatchNormalization()
        self.conv2 = keras.layers.Conv2D(filters//expansion, 3, padding='same')
        self.bn2 = keras.layers.BatchNormalization()
        self.conv3 = keras.layers.Conv2D(filters, 1)
        self.bn3 = keras.layers.BatchNormalization()
        self.shortcut = self._build_shortcut(filters, strides)

    def _build_shortcut(self, filters, strides):
        return keras.Sequential([
            keras.layers.Conv2D(filters, 1, strides=strides),
            keras.layers.BatchNormalization()
        ]) if strides > 1 else lambda x: x

    def call(self, inputs):
        x = keras.activations.relu(self.bn1(self.conv1(inputs)))
        x = keras.activations.relu(self.bn2(self.conv2(x)))
        x = self.bn3(self.conv3(x))
        shortcut = self.shortcut(inputs)
        return keras.activations.relu(x + shortcut)

1.2 ResNet-34结构详解

Stage Layer Type Output Size Filter Size/Stride Repeat
Conv1 7x7 Conv 112x112x64 7x7, stride 2 1
Conv2 3x3 MaxPool 56x56x64 3x3, stride 2 1
Conv3 Residual Block 56x56x64 [3x3, 3x3] 3
Conv4 Residual Block 28x28x128 [3x3, 3x3] stride 2 4
Conv5 Residual Block 14x14x256 [3x3, 3x3] stride 2 6
Conv6 Residual Block 7x7x512 [3x3, 3x3] stride 2 3
Final Global Average Pool 1x1x512 - 1

二、工业级Keras实现详解

2.1 数据预处理流水线

def build_augmentation_pipeline():
    return keras.Sequential([
        layers.Rescaling(1./255),
        layers.RandomFlip("horizontal"),
        layers.RandomRotation(0.1),
        layers.RandomZoom(0.2),
        layers.RandomContrast(0.1),
        layers.GaussianNoise(0.1)
    ])

train_ds = keras.preprocessing.image_dataset_from_directory(
    "data/train",
    image_size=(224, 224),
    batch_size=32,
    label_mode='categorical'
).map(lambda x, y: (build_augmentation_pipeline()(x), y))

2.2 完整模型实现

def build_resnet34(input_shape=(224,224,3), num_classes=1000):
    inputs = keras.Input(shape=input_shape)
    x = layers.Conv2D(64, 7, strides=2, padding="same")(inputs)
    x = layers.BatchNormalization()(x)
    x = layers.Activation("relu")(x)
    x = layers.MaxPool2D(3, strides=2, padding="same")(x)

    filters_list = [(64, 1), (128, 2), (256, 2), (512, 2)]
    repeat_counts = [3, 4, 6, 3]

    for (filters, stride), repeats in zip(filters_list, repeat_counts):
        for i in range(repeats):
            x = ResidualUnit(filters, stride if i == 0 else 1)(x)

    x = layers.GlobalAvgPool2D()(x)
    x = layers.Dense(num_classes, activation="softmax")(x)

    return keras.M

你可能感兴趣的:(机器学习专栏(62):手把手实现工业级ResNet-34及调优全攻略)