- Qt 下拉框QComboBox控件:从入门到实战
一、QComboBox核心功能解析1.核心属性属性说明当前示例场景count列表项总数统计学历下拉框中的选项数量editable是否允许用户编辑学历选择时可输入自定义学历currentText当前选中项的文本获取用户选择的"硕士"文本currentData当前选中项的附加数据获取太原对应的区号"0351"currentIndex当前选中项的索引位置(从0开始)确定"硕士"在列表中的位置2.核心方法
- 理解泊松分布与正态分布的数学之美
背景简介在统计学和数据分析领域,泊松分布和正态分布是两种极其重要的概率分布。它们不仅在理论上具有深刻的意义,而且在各种实际应用中,如自然科学研究、金融风险评估、市场调查分析等领域都扮演着关键角色。本文将深入探讨泊松分布的推导过程和作为二项分布极限的情况,以及正态分布概率密度函数的积分求解方法和其最大值及拐点的位置。泊松分布的推导泊松分布是描述在固定时间间隔或空间区域内发生某事件的次数的概率分布。它
- 数学基础薄弱者的大数据技术学习路径指南
Re_Yang09
学习
CDA数据分析师证书含金量高,适应了未来数字化经济和AI发展趋势,难度不高,行业认可度高,对于找工作很有帮助。一、大数据技术数学需求分层二、低门槛学习路线图阶段1:工具优先(3-6个月)技能学习重点替代方案Excel透视表/条件格式WPS表格SQL多表关联/窗口函数MySQL社区版Tableau仪表板制作PowerBI免费版阶段2:实战突破(6-12个月)阶段3:精准补数(1-2个月)统计学速成清
- 统计学5——概率与概率分布
目录知识结构内容精读1.随机事件与概率2.离散型随机变量3.连续型随机变量名词解释小结知识结构内容精读1.随机事件与概率1.1事件随机事件通俗来讲就是在相同条件下可能发生也可能不发生的事件,也就是事件发生的概率是不确定的。与之对应的还有必然事件与不可能事件,显而易见,必然事件就是一定发生的事件,不可能事件与之相反是一定不会发生的事件。他们的符号表示如下:随机事件必然事件不可能事件1.2概率概率及对
- 15、统计学基础:数据描述、推断与分析
您的账号已被封禁
统计学数据描述推断分析
统计学基础:数据描述、推断与分析1.统计类型概述在数据分析中,我们常常需要了解数据的各种特征,这就涉及到不同类型的统计方法。主要有参数统计和非参数统计,其中非参数统计中的顺序统计量在很多场景下有着独特的优势。1.1顺序统计量顺序统计量用于指定数据值在有序集合中的位置,它只要求数据值是有序的,因此适用于比参数统计更广泛的数据分布。常见的顺序统计量包括中位数、四分位数等。-中位数:是排序后分布中处于中
- 统计学①——概率论基础及业务实战
数据小斑马
统计学统计学基础概率分布随机变量期望和方差转盘
统计学系列目录(文末有超级大礼):统计学②——概率分布(几何,二项,泊松,正态分布)统计学③——总体与样本统计学④——置信区间统计学⑤——假设验证一、统计学是什么?统计学分为两类,一类是描述性统计学,通过对数据的集中趋势和变异趋势的刻画来描述数据的分布情况,集中趋势有平均值,中位数和众数三个指标,变异趋势则有全距,四分位距,百分位距,方差,标准差等指标来衡量另一类是推断统计学,通过对样本的统计来推
- 统计学07:概率论基础
夜雨声烦yyy
统计学概率论
一、基础概念概率p代表事件发生的可能性大小,在0-1范围内ab测试中的p值,就代表一种概率(在零假设成立的前提下,观察当前数据或者比当前数据更加极端的数据的概率,p值越小,意味着在零假设成立的情况下,观察到当前结果的概率越小)二、基本性质非负性:P(A)>=0规范性:整个样本空间发生的概率是1加法公式:两个事件A和B的概率之和是P(A∪B)=P(A)+P(B)−P(A∩B)(非互斥事件)P(A∪B
- 《R 矩阵》
lsx202406
开发语言
《R矩阵》引言在数学与统计学领域,矩阵是一种强大的工具,它广泛应用于各种科学研究和实际应用中。本文将深入探讨R矩阵的概念、特性及其在数据分析中的应用。R矩阵的定义与特性1.定义R矩阵,全称为“实对称矩阵”,是指一个实数域上的n×n矩阵,满足以下条件:矩阵A的元素a_ij和a_ji相等,即A是对称矩阵;矩阵A的元素a_ij和a_ji都是实数。2.特性(1)R矩阵是对称的,即A^T=A;(2)R矩阵的
- 【C++】使用箱线图算法剔除数据样本中的异常值
目录一、箱线图算法介绍二、五数概括计算解释三、四分位距(IQR)与异常值判定四、箱线图在数据处理中的应用1.异常值检测2.数据分布比较3.偏态与离散程度分析4.非参数数据展示五、箱线图的局限性六、代码实现及注释七、如果这篇文章能帮助到你,请点个赞鼓励一下吧ξ(✿>◡❛)~一、箱线图算法介绍箱线图(Boxplot)是一种基于统计学的数据可视化和数据处理工具,箱线图假设数据样本服从正态分布,通过五数概
- 量化金融简介(附电子书资料)
hweiyu00
技术栈杂谈量化金融
概述量化金融(QuantitativeFinance)是一门融合数学、统计学、计算机科学与金融学的交叉学科,核心是通过量化模型和数据分析解决金融领域的问题,例如资产定价、风险管理、投资策略开发等。它的兴起与金融市场的复杂化、数据可获得性提升以及计算机算力发展密切相关。电子书资料:https://pan.quark.cn/s/cb1e6b72fbec一、量化金融的核心目标降低不确定性:通过数学模型分
- 遥感技术在地质构造及找矿中应用
BNU_JW
摘要利用Landsat-8卫星的ETM+遥感影像为数据源,结合当地区域地质调查基础资料,对中国西北某高原地区内线性断裂、环形构造、侵入岩体、赋矿地层等地质构造的成矿特征开展遥感解译,综合运用数理统计原理与地统计学分析方法,分析遥感解译的地质构造信息与矿产勘查的相关性,总结了区内解译构造与成矿关系条件。1、区域地质构造概况工作区位于我国西部核心构造部位的青藏高原北缘,北邻塔里木盆地,南接柴达木盆地,
- R语言的分位数回归实践技术高级应用
梦想的初衷~
R语言生态农业r语言回归
回归是科研中最常见的统计学研究方法之一,在研究变量间关系方面有着极其广泛的应用。由于其基本假设的限制,包括线性回归及广义线性回归在内的各种常见的回归方法都有三个重大缺陷:(1)对于异常值非常敏感,极少量的异常值可能导致结果产生巨大的误差;(2)对数据的分布有着较为苛刻的要求,如果数据不符合指定的分布,结果同样是不可信的;(3)只能估计因变量的条件均值,不能估计自变量对因变量分位点的不同影响。分位数
- 数据科学的统计学(一)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/c1775cf5add79c3a9b0f4e83a2b2229d译者:飞龙协议:CCBY-NC-SA4.0前言统计学是数据科学领域任何任务的绝对必要先决条件,但对于进入数据科学领域的开发人员来说,可能也是最令人生畏的障碍。本书将带你踏上从几乎一无所知到能够熟练使用各种统计方法处理典型数据科学任务的统计之旅。本书所需的内容本书适合那些有数据开发背景的
- 概率论基础:公理、定律与贝叶斯定理
偏偏无理取闹
概率论公理贝叶斯定理条件概率随机变量
背景简介概率论是数学的一个分支,主要研究随机事件和随机变量的概率。它是现代统计学、经济学、保险学、金融学、密码学等多个领域不可或缺的理论基础。本文将通过介绍概率论的三大公理,推导出重要的概率法则,并探讨贝叶斯定理及其应用。概率的三大公理概率论的基础在于一套明确的公理系统,这些公理为计算和理解概率提供了数学上的框架。公理1:概率值的范围每个事件A的概率值介于0和1之间,即0≤Pr[A]≤1。这意味着
- R语言基本操作
易易前端
R语言基础实践r语言开发语言
R语言基本操作为什么选择R?丰富的资源涵盖了多种行业数据分析中几乎所有的方法;良好的扩展性十分方便的编写函数和程序包,跨平台,可以胜任复杂的数据分析、绘制精美的图形;完备的帮助系统每个函数都有统一格式的帮助,运行实例;GNU软件免费、软件本身及程序包的源代码公开;R的特点:多领域的统计资源目前在R网站上约有4000个程序包,涵盖了基础统计学、社会学、经济学、生态学、空间分析、系统发育分析、生物信息
- 机器学习之——认识机器学习
-睡到自然醒~
golang重构开发语言
首先,什么是机器学习?参照百度百科的讲解,“机器学习是一门多领域交叉学科,设计概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习能力,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。”什么意思呢?也就是说,机器学习是一门跨领域的学科,是一种能够让机器模仿人类学习能力的一种学科。在Andrew的课程中,提到了几个机器学习的定义:1,A
- 李航老师-统计学习
小三爷_df1b
三个准则1.作为入门选手,不要每章都看2.不要从零造轮子去实现算法,太浪费时间3.必须能手推公式章节目录##统计学习概论-统计学习的目的是对数据进行==预测与分析==-统计学习的前提是同类数据具有一定的统计规律性-统计学习的方法-监督学习(supervisedlearning)-非监督学习(unsupervisedlearning)-半监督学习(semi-supervisedlearning)-强
- 认真对待每一天
Naziya
每天看几个小时的视频节目,再刷几个小时的公众号和微博,不用担心,你会离梦想中的生活越来越远。一天一共24小时,去掉你睡觉的10个小时,一天还有14个小时。如果是上班族、学生党肯定有剩下二分之一的时间是上班或者上课。如果你是无业游民或者不用上班不用学习的咸鱼,呢你有整整14个小时,840分钟,50400秒。按统计学的角度来算,顶级的英语老师和普通的英语老师按每节课算的费用相差大概10倍左右。这样一来
- 学习人工智能开发的详细指南
Ws_
学习人工智能python
一、引言人工智能(AI)开发是一个充满挑战与机遇的领域,它融合了数学、计算机科学、统计学、认知科学等多个学科的知识。随着大数据、云计算和深度学习技术的快速发展,AI已经成为推动社会进步和产业升级的关键力量。本文将为初学者提供一份详细的学习指南,帮助大家逐步掌握AI开发的核心技能。二、基础知识准备数学基础:线性代数:理解向量、矩阵、线性变换等基本概念,掌握矩阵运算和特征值分解等技巧。概率论与统计学:
- Python Pandas 实践学习笔记(1)
PythonPandas教程Pandas是一个开源的、BSD许可证的Python库,为Python编程语言提供高性能、易于使用的数据结构和数据分析工具。Python与Pandas在学术和商业领域都被广泛应用,包括金融、经济、统计学、分析等领域。在本教程中,我们将学习PythonPandas的各种特性以及如何在实践中使用它们。教程对象本教程适用于那些想要学习Pandas基础知识和各种函数的人。对于从
- 深度解析股票量化标准,从数据筛选到模型构建全面解读
股票程序化交易接口
量化交易股票API接口Python股票量化交易股票量化标准数据筛选模型构建量化分析股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>股票量化标准的定义股票量化标准是一套运用数学和统计学方法,对股票投资进行系统性分析与决策的准则。它将各种影响股票价格的因素,如财务数据、市场交易数据等进行量化处理。通过这些量化后的指标,投资者能更精准地评估股票的价值与潜力,减少主观判
- GEV/POT/Markov/点过程/贝叶斯极值全解析;基于R语言的极值统计学
极值统计学就是专门研究自然界和人类社会中很少发生,然而发生之后有着巨大影响的极端现象的统计建模及分析方法;在水文、气象、环境、生态、保险和金融等领域都有着广泛的应用。专题一、独立假设下的极值统计建模主要内容包括:1.广义极值模型.2.极小值的处理.3.广义Pareto模型.4.第r大次序统计量建模.5.R语言中极值统计学包.6.实例操作1-2.(提供案例数据及代码)专题二、平稳时间序列的极值统计建
- 基于R语言的极值统计学及其在相关领域中的实践技术应用
科研的力量
语言类课程极值统计学
受到气候变化、温室效应以及人类活动等因素的影响,自然界中极端高温、极端环境污染、大洪水和大暴雨等现象的发生日益频繁;在人类社会中,股市崩溃、金融危机等极端情况也时有发生;今年的新冠疫情就是非常典型的极端现象。研究此类极端现象需要新的统计学方法,该类统计学的理论和方法都与传统的基于高斯分布的统计学模型有极大的不同。极值统计学就是专门研究自然界和人类社会中很少发生,然而发生之后有着巨大影响的极端现象的
- 数据挖掘:从理论到实践的深度探索
代码老y
数据挖掘人工智能
在当今数字化时代,数据已经成为企业决策的重要依据。数据挖掘作为一门从大量数据中提取有价值信息的技术,已经广泛应用于各个领域,如金融、医疗、零售、互联网等。本文将深入探讨数据挖掘的基本概念、主要技术和实际应用案例,帮助读者更好地理解数据挖掘的价值和应用。一、数据挖掘的基本概念(一)数据挖掘的定义数据挖掘(DataMining)是从大量数据中提取有用信息的过程。它结合了统计学、机器学习、数据库技术和人
- Z-score异常值检测法
吴闹闹(●'◡'●)
人工智能算法
Z-score异常值检测法是一种基于统计学原理的异常值检测技术。它通过计算数据点与数据集平均值的标准化距离来判断该数据点是否为异常值。一、原理Z-score异常值检测法的原理是基于标准正态分布。它通过计算每个数据点与数据集平均值的差距,并将其转换为标准差的倍数,以此来评估数据点的异常程度。在标准正态分布中,大约68%的数据点位于平均值的一个标准差之内,95%的数据点位于两个标准差之内,而99.7%
- 基于流量特征分析的DDoS实时检测与缓解实战
问题场景当Web服务器突发大量SYNFlood攻击时,传统防火墙难以区分真实用户与伪造流量,导致业务中断。解决方案核心:动态流量指纹识别通过统计学习建立正常流量基线,实时拦截异常连接。#DDoS流量检测脚本(Python3+Scapy)fromscapy.allimport*fromcollectionsimportdefaultdictimporttimeTHRESHOLD=1000#每秒SYN
- 【数据分析】R语言基于虚弱指数的心血管疾病风险评估
生信学习者1
数据分析(2025版)数据分析r语言数据挖掘数据可视化
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍加载R包数据下载导入数据数据预处理画图其他1其他2其他3其他4总结系统信息介绍生存分析是医学和生物统计学中常用的方法,用于研究事件(如疾病发生、死亡等)发生的时间和相关影响因素。本文介绍了一种基于R语言的生存分析方法,用于评估虚弱指数(FrailtyIndex,FI)对心血管疾病(CVD)发生风险的影响。通过这
- Python数据可视化:使用Python创建令人惊艳的图表
master_chenchengg
pythonpythonPythonpython开发IT
Python数据可视化:使用Python创建令人惊艳的图表I.可视化的力量:为什么一张好图胜过千言万语II.工欲善其事必先利其器:选择合适的Python可视化库Matplotlib入门:打造你的第一张图表Seaborn的魅力:更美观、更统计学友好的绘图Plotly互动式图表:让你的数据动起来Bokeh与GeoPandas:探索地理空间数据的新维度III.从零开始:一步步教你构建基本图表散点图的艺术
- PyTorch笔记3----------统计学相关函数
HuashuiMu花水木
PyTorch笔记pytorch笔记人工智能
1.基础函数importtorcha=torch.rand(2,2)print("a:\n",a)print('########################')print("平均值:\n",torch.mean(a,dim=0))print("总和:\n",torch.sum(a,dim=0))print("所有元素的积:\n",torch.prod(a,dim=0))print("最大值:\
- 机器学习笔记二-回归
回归是统计学和机器学习中的一种基本方法,用于建模变量之间的关系,特别是用一个或多个自变量(输入变量)来预测一个因变量(输出变量)的值。回归分析广泛应用于预测、趋势分析和关联研究中。根据目标和数据的性质,可以使用不同类型的回归方法。1.回归的基本概念:自变量(IndependentVariable):也称为预测变量、解释变量,是模型中的输入变量,用于预测或解释因变量的变化。因变量(Dependent
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的