- 机器学习必备数学与编程指南:从入门到精通
a小胡哦
机器学习基础机器学习人工智能
一、机器学习核心数学基础1.线性代数(神经网络的基础)必须掌握:矩阵运算(乘法、转置、逆)向量空间与线性变换特征值分解与奇异值分解(SVD)为什么重要:神经网络本质就是矩阵运算学习技巧:用NumPy实际操作矩阵运算2.概率与统计(模型评估的关键)核心概念:条件概率与贝叶斯定理概率分布(正态、泊松、伯努利)假设检验与p值应用场景:朴素贝叶斯、A/B测试3.微积分(优化算法的基础)重点掌握:导数与偏导
- 时序预测 | MATLAB实现贝叶斯优化CNN-GRU时间序列预测(股票价格预测)
Matlab机器学习之心
matlabcnngru
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍股票价格预测一直是金融领域一个极具挑战性的课题。其内在的非线性、随机性和复杂性使得传统的预测方法难以取得令人满意的效果。近年来,深度学习技术,特别是卷积神经网络(CNN)和门控循环单元(GRU)的结合,为时
- 时序预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测
Matlab算法改进和仿真定制工程师
matlabcnngru
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍时间序列预测在各个领域都具有重要的应用价值,例如金融市场预测、气象预报、交通流量预测等。准确地预测未来趋势对于决策制定至关重要。近年来,深度学习技术在时间序列预测领域取得了显著进展,其中卷积神经网络(CNN)和门控循环单元(GRU)由于其强
- 机器学习朴素贝叶斯算法——python详细代码解析(sklearn)
python机器学习ML
机器学习python算法sklearn朴素贝叶斯
朴素贝叶斯算法(NaiveBayesianalgorithm)是在贝叶斯算法的基础上假设特征变量相互独立的一种分类方法,是贝叶斯算法的简化,常用于文档分类和垃圾邮件过滤。当“特征变量相互独立”的假设条件能够被有效满足时,朴素贝叶斯算法具有算法比较简单、分类效率稳定、所需估计参数少、对缺失数据不敏感等种种优势。而在实务中“特征变量相互独立”的假设条件往往不能得到满足,这在一定程度上降低了贝叶斯分类算
- 人工智能之数学基础:概率论之韦恩图的应用
每天五分钟玩转人工智能
概率论韦恩图
韦恩图的应用由于事件的计算有时候太过于抽象了,此时我们可以使用韦恩图的方式来进行验证,我们下面来举一个例子,A∪B)-C=A∪(B-C)是否成立?我们可以通过韦恩图来完成这个任务:我们通过这种方式来一点一点的比较,我们可以看到二者根本就不相等。AB杠和A杠B杠之间的区别?AB表示AB同时发生,AB杠表示AB不同时发生(覆盖范围大)A杠B杠表示A、B都不发生(覆盖范围小)我们也可以通过韦恩图的方式来
- 统计学①——概率论基础及业务实战
数据小斑马
统计学统计学基础概率分布随机变量期望和方差转盘
统计学系列目录(文末有超级大礼):统计学②——概率分布(几何,二项,泊松,正态分布)统计学③——总体与样本统计学④——置信区间统计学⑤——假设验证一、统计学是什么?统计学分为两类,一类是描述性统计学,通过对数据的集中趋势和变异趋势的刻画来描述数据的分布情况,集中趋势有平均值,中位数和众数三个指标,变异趋势则有全距,四分位距,百分位距,方差,标准差等指标来衡量另一类是推断统计学,通过对样本的统计来推
- 统计学07:概率论基础
夜雨声烦yyy
统计学概率论
一、基础概念概率p代表事件发生的可能性大小,在0-1范围内ab测试中的p值,就代表一种概率(在零假设成立的前提下,观察当前数据或者比当前数据更加极端的数据的概率,p值越小,意味着在零假设成立的情况下,观察到当前结果的概率越小)二、基本性质非负性:P(A)>=0规范性:整个样本空间发生的概率是1加法公式:两个事件A和B的概率之和是P(A∪B)=P(A)+P(B)−P(A∩B)(非互斥事件)P(A∪B
- 【对比】群体智能优化算法 vs 贝叶斯优化
TIM老师
transformer深度学习人工智能
在机器学习、工程优化和科学计算中,优化算法的选择直接影响问题求解的效率与效果。群体智能优化算法(SwarmIntelligence,SI)和贝叶斯优化(BayesianOptimization,BO)是两种截然不同的优化范式,分别以不同的哲学和数学基础解决高维、非凸、多峰等问题。本文将从原理、特点到应用场景,深入解析两者的异同。一、基础概念1.群体智能优化算法群体智能算法受自然界生物群体行为启发(
- 数学专业转型数据分析竞争力发展报告
Re_Yang09
数据分析数据挖掘
一、核心优势拆解(1)数学能力与数据分析对应关系数学课程数据分析应用场景比较优势说明概率论假设检验设计能准确判断统计显著性阈值实变函数数据质量评估异常值检测的严格性更高线性代数特征工程构建矩阵运算优化模型训练效率(2)典型优势案例金融风控场景:数学背景者构建的违约预测模型AUC值平均高0.15用户画像分析:数学系毕业生提出的分层抽样方案降低30%调研成本二、技能补全路线图三、转型学习路径(1)阶段
- Python实现基于BO-CNN-LSTM-Mutilhead-Attention贝叶斯优化算法(BO)优化卷积长短期记忆神经网络融合多头注意力机制进行多特征分类预测的详细项目实例(含模型描述及示例代
nantangyuxi
Python含模型描述及示例代码算法神经网络python人工智能大数据深度学习机器学习
目录Python实现基于BO-CNN-LSTM-Mutilhead-Attention贝叶斯优化算法(BO)优化卷积长短期记忆神经网络融合多头注意力机制进行多特征分类预测的详细项目实例...2项目背景介绍...2项目目标与意义...3高效的模型优化...3深度特征提取...3序列数据的时序建模...3
- 人工智能之数学基础:概率论和数理统计在机器学习的地位
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能概率论机器学习神经网络线性代数
概率和统计的概念概率统计是各类学科中唯一一门专门研究随机现象的规律性的学科,随机现象的广泛性决定了这一学科的重要性。概率论是数学的分支,它研究的是如何定量描述随机现象及其规律。我们之前经常在天气软件上看到:“今天下雨的概率是95%”,这个95%就是概率,概率就是描述可能性的一个数值。概率在机器学习中的地位概率论在机器学习中至关重要,因为我们可以将机器学习的输入数据看作是随机变量,当机器学习中的输出
- 贝叶斯网络与深度学习结合:AI人工智能前沿技术探索
AIGC应用创新大全
人工智能深度学习ai
贝叶斯网络与深度学习结合:AI人工智能前沿技术探索关键词:贝叶斯网络、深度学习、概率推理、表示学习、不确定性建模、AI融合技术、因果推断摘要:深度学习擅长从海量数据中挖掘复杂模式,但像个“没带指南针的探险家”——不知道自己的判断有多可靠;贝叶斯网络擅长用因果关系和概率处理不确定性,却像个“没见过世面的老学者”——不会从大数据中学习新规律。当这两个“AI高手”联手,会碰撞出怎样的火花?本文将用“医生
- 【AI 赋能:Python 人工智能应用实战】6. 概率图模型入门:贝叶斯网络与隐马尔可夫模型实战
AI_DL_CODE
AI赋能:Python人工智能应用实战人工智能python概率图模型贝叶斯网络隐马尔可夫模型概率推断HMM
摘要:本文系统介绍概率图模型的基础理论与实战应用,聚焦贝叶斯网络与隐马尔可夫模型(HMM)两大核心模型。理论部分解析概率图模型的分类体系:贝叶斯网络(有向无环图)用于静态不确定性建模,代表算法为变量消元,适用于医疗诊断;马尔可夫网络(无向图)依托置信传播,应用于图像分割;HMM(时序链结构)通过维特比算法等解决语音识别等时序问题。详解贝叶斯网络三要素:结构学习(爬山算法)、参数学习(最大似然与贝叶
- Judea Pearl:要建立真 迪士尼3带聊天室源码搭建下载 正的智能机器
hfghfgh3453454
迪士尼3带聊天室源码搭建下载地址一:【hubawl.com】狐霸源码论坛地址二:【bbscherry.com】车厘子源码论坛人工智能给JudeaPearl(贝叶斯之父)带来诸多启发。在二十世纪八十年代,他领导的工作使机器能够以概率方式进行推理。现在他是该领域最敏锐的评论家之一。在他的最新著作“TheBookofWhy:TheNewScienceofCauseandEffect”中,他认为人工智能的
- 概率论基础:公理、定律与贝叶斯定理
偏偏无理取闹
概率论公理贝叶斯定理条件概率随机变量
背景简介概率论是数学的一个分支,主要研究随机事件和随机变量的概率。它是现代统计学、经济学、保险学、金融学、密码学等多个领域不可或缺的理论基础。本文将通过介绍概率论的三大公理,推导出重要的概率法则,并探讨贝叶斯定理及其应用。概率的三大公理概率论的基础在于一套明确的公理系统,这些公理为计算和理解概率提供了数学上的框架。公理1:概率值的范围每个事件A的概率值介于0和1之间,即0≤Pr[A]≤1。这意味着
- 机器学习之——认识机器学习
-睡到自然醒~
golang重构开发语言
首先,什么是机器学习?参照百度百科的讲解,“机器学习是一门多领域交叉学科,设计概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习能力,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。”什么意思呢?也就是说,机器学习是一门跨领域的学科,是一种能够让机器模仿人类学习能力的一种学科。在Andrew的课程中,提到了几个机器学习的定义:1,A
- Deepoc大模型重构核工业智能基座:混合增强架构与安全增强决策技术
Deepoch
人工智能创业创新科技自动化学习
面向复杂系统的高可靠AI赋能体系构建Deepoc大模型通过多维度技术突破,显著提升核工业知识处理与决策可靠性。经核能行业验证,其生成内容可验证性提升68%,关键参数失真率99.999%)。动态可信度评估系统:基于贝叶斯神经网络实时量化模型不确定性,为关键决策提供置信度评分(如堆芯功率控制置信区间±0.05%)。二、核心突破:物理增强型智能算法创新机理与数据双驱动建模神经微分方程求解器:将中子输运方
- 学习人工智能开发的详细指南
Ws_
学习人工智能python
一、引言人工智能(AI)开发是一个充满挑战与机遇的领域,它融合了数学、计算机科学、统计学、认知科学等多个学科的知识。随着大数据、云计算和深度学习技术的快速发展,AI已经成为推动社会进步和产业升级的关键力量。本文将为初学者提供一份详细的学习指南,帮助大家逐步掌握AI开发的核心技能。二、基础知识准备数学基础:线性代数:理解向量、矩阵、线性变换等基本概念,掌握矩阵运算和特征值分解等技巧。概率论与统计学:
- 大学专业科普 | 计算智能、信息学与大数据
鸭鸭鸭进京赶烤
大数据
一、专业背景随着信息技术的飞速发展,数据的产生速度呈爆炸式增长,传统数据处理技术已经无法满足如此庞大的数据量和复杂的数据类型,大数据专业应运而生,旨在培养能够应对大数据挑战的专业人才。二、主要课程内容数学基础课程高等数学、概率论与数理统计、线性代数是大数据分析的核心数学基础,为数据处理、算法优化和模型构建提供必要的理论支持。计算机基础课程数据结构与算法、计算机网络、操作系统是大数据技术的重要支撑,
- 大学专业科普 | 人工智能、物联网和云计算技术
鸭鸭鸭进京赶烤
人工智能物联网云计算5G信号处理信息与通信网络
一、专业概述人工智能专业是一门融合计算机科学、数学、信息学等多学科知识的交叉学科。它旨在培养学生掌握人工智能领域的基本理论、方法和技能,以应对人工智能在各个领域的应用需求和发展挑战。二、主要课程基础课程:包括高等数学、线性代数、概率论与数理统计、离散数学等数学基础课程,为人工智能算法提供理论支撑;以及数据结构、算法设计与分析、计算机组成原理、操作系统、计算机网络等计算机科学基础课程,帮助学生理解人
- 【农业模型】GPT地学领域应用、AquaCrop、R贝叶斯生态、Copula函数、DSSAT、APSIM、WOFOST、DNDC、CERRES、SWACRO、RZWQM、POTATO、SOLANUM
weixin_贾
遥感数据与作物模型地理遥感生态模型ChatGPT4/DeepSeekgptr语言无人机经验分享
农业模型依据研究对象分为农业生物模型、农业环境模型、农业技术模型、农业经济模型作物模型,即作物生长模拟模型(或称作物生长模型),是从系统科学的角度,基于作物生理过程机制,将气候、土壤、作物品种和管理措施等对作物生长的影响因素作为一个整体系统的数值模拟系统。能够以特定时间步长对作物在单点尺度上生长发育的生物学参数以及作物产量进行动态模拟,定量化研究环境因子以及田间管理措施对作物生长发育的影响。通用型
- 朴素贝叶斯
不会忘的名字
1.关键词朴素:独立性假设贝叶斯公式贝叶斯公式简单例子另一个例子,现分别有A、B两个容器,在容器A里分别有7个红球和3个白球,在容器B里有1个红球和9个白球,现已知从这两个容器里任意抽出了一个球,且是红球,问这个红球是来自容器A的概率是多少?假设已经抽出红球为事件B,选中容器A为事件A,则有:P(B)=8/20,P(A)=1/2,P(B|A)=7/10,按照公式,则有:P(A|B)=(7/10)*
- Python day15
@浙大疏锦行Pythonday15.内容:复习日本周主要的内容是一些常见的机器学习流程以及其中的部分内容标签编码以及连续特征的处理:归一化和正态化等。图像的绘制:热力图、Shap图等的绘制超参数优化算法:网格搜索、贝叶斯以及启发式算法模拟退火、遗传算法等不平衡数据集的处理:过采样以及欠采样。
- Python 机器学习:NumPy 实现朴素贝叶斯分类器
Python编程之道
Python编程之道python机器学习numpyai
Python机器学习:NumPy实现朴素贝叶斯分类器关键词:朴素贝叶斯分类器、NumPy、机器学习、概率模型、条件概率、拉普拉斯平滑、向量化计算摘要:本文系统讲解朴素贝叶斯分类器的核心原理,基于NumPy实现高效的算法框架,涵盖从概率理论到工程实现的完整流程。通过数学公式推导、代码实现和鸢尾花数据集实战,展示如何利用向量化计算优化概率估计,解决特征独立性假设下的分类问题。同时分析算法优缺点及实际应
- MAP最大后验估计:贝叶斯决策的优化引擎
大千AI助手
人工智能Python#OTHERpython人工智能算法贝叶斯MAP概率论条件概率
融合先验知识与观测数据的概率推断方法本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心概念与数学本质MAP(MaximumAPosteriori)估计是贝叶斯框架下的参数估计方法,其目标为:最大化后验概率(P(\theta\midX)),即:[\hat{\theta}{MAP}=\arg\ma
- GEV/POT/Markov/点过程/贝叶斯极值全解析;基于R语言的极值统计学
极值统计学就是专门研究自然界和人类社会中很少发生,然而发生之后有着巨大影响的极端现象的统计建模及分析方法;在水文、气象、环境、生态、保险和金融等领域都有着广泛的应用。专题一、独立假设下的极值统计建模主要内容包括:1.广义极值模型.2.极小值的处理.3.广义Pareto模型.4.第r大次序统计量建模.5.R语言中极值统计学包.6.实例操作1-2.(提供案例数据及代码)专题二、平稳时间序列的极值统计建
- LLM-生成器判别器的实现
总结首先,使用GPT模型获取每个词的生成概率pLLMp_{LLM}pLLM。然后,使用训练好的生成判别器,对每个可能的生成结果进行打分,得到pθ(c∣x1:t)p_\theta(c|x_{1:t})pθ(c∣x1:t)。最后,结合两者的输出,用贝叶斯规则调整每个词的概率,选择调整后的概率最高的词作为输出。通过这样的组合,生成过程可以更好地满足预期需求,如生成符合特定风格或格式的文本。要在使用已经预
- 【机器学习-08】参数调优宝典:网格搜索与贝叶斯搜索等攻略
云天徽上
机器学习机器学习人工智能
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- 结构方程模型(SEM)高阶应用系列
梦想的初衷~
结构方程生态环境python开发语言结构方程
结构方程模型(StructuralEquationModeling)是分析多变量间因果关系的利器,在众多学科领域具有巨大应用潜力。我们前期推出的《基于R语言结构方程模型》通过结构方程原理介绍、结构方程全局和局域估计、模型构建和调整、潜变量分析、复合变量分析及结构方程贝叶斯方法实现等一系列专题的介绍及大量案例讲解,由浅入深地系统介绍了结构方程模型的建立、拟合、评估、筛选和结果展示全过程,得到学员广泛
- 条件概率:不确定性决策的基石
大千AI助手
人工智能Python#OTHER决策树算法机器学习人工智能条件概率概率论
条件概率是概率论中的核心概念,用于描述在已知某一事件发生的条件下,另一事件发生的概率。它量化了事件之间的关联性,是贝叶斯推理、统计建模和机器学习的基础。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、定义与公式设(A)和(B)是两个随机事件,且(P(B)>0):条件概率(P(A\midB))表示
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen