- 大模型量化终极对决:FP8 vs AWQ INT4,谁才是性能与精度的王者?
曦紫沐
大模型人工智能大模型量化FP8AWQ_INT4
摘要在大模型部署与优化中,量化技术是突破性能瓶颈的关键。FP8量化与AWQINT4量化作为当前主流方案,分别以“高精度”和“极致压缩”为核心优势。本文通过表格对比二者的数据格式、精度损失、硬件依赖及适用场景,助您在不同需求下精准选择最优方案。一、数据格式:浮点与整数的底层差异FP8量化采用浮点数(FP8),包含E4M3(4位阶码+3位尾数)和E5M2(5位阶码+2位尾数)两种格式,保留动态范围;而
- Python爬虫【五十八章】Python数据清洗与分析全攻略:从Pandas到深度学习的异常检测进阶
程序员_CLUB
Python入门到进阶python爬虫pandas
目录背景与需求分析第一章:结构化数据清洗实战(Pandas核心技法)1.1数据去重策略矩阵1.2智能缺失值处理体系第二章:深度学习异常检测进阶2.1自动编码器异常检测(时序数据)2.2图神经网络异常检测(关系型数据)第三章:综合案例实战案例1:金融交易反欺诈系统案例2:工业传感器异常检测第四章:性能优化与工程实践4.1大数据处理加速技巧4.2模型部署方案第五章:方法论总结与展望5.1方法论框架5.
- 【Ollama】大模型本地部署与 Java 项目调用指南
科马
LLMjava开发语言llama语言模型
Ollama大模型本地部署与Java项目调用指南一、引言背景介绍Ollama是一个轻量级的大语言模型部署工具,支持快速在本地拉取、运行主流开源模型(如LLaMA3、Mistral、Gemma等)。它简化了模型部署的过程,内置RESTfulAPI,使得开发者可以像调用本地服务一样使用强大的大模型能力。本文将介绍如何在本地部署Ollama模型,并通过Java项目调用Ollama提供的API接口,实现本
- 【代码问题】【模型部署】部署千问时,ImportError: Cannot import available module of Qwen2_5_VLForConditionalGeneration
Catching Star
pythonpytorch开发语言
多半是环境的问题,最主要的是python版本要高python==3.12.9accelerate==1.8.1pipinstallqwen-vl-utils[decord]==0.0.8peft==0.14.0transformers==4.52.3torch==2.7.0torchvision==0.22.0modelscope==1.27.1
- 基于Jetson Nano与PyTorch的无人机实时目标跟踪系统搭建指南
引言:边缘计算赋能智能监控在AIoT时代,将深度学习模型部署到嵌入式设备已成为行业刚需。本文将手把手指导读者在NVIDIAJetsonNano(4GB版本)开发板上,构建基于YOLOv5+SORT算法的实时目标跟踪系统,集成无人机控制与地面站监控界面,最终打造低功耗智能监控设备。通过本项目,读者将掌握:嵌入式端模型优化与部署技巧;多目标跟踪算法工程化实现;无人机-地面站协同控制架构;边缘计算场景下
- stable diffusion No module named taming
图片gan模型部署报错。pipinstalltaming-transformersImportError:cannotimportname'VectorQuantizer2'from'taming.modules.vqvae.quantize',用https://github.com/CompVis/taming-transformers/blob/master/taming/modules/vq
- 论文笔记:EMR-MERGING: Tuning-Free High-Performance Model Merging
UQI-LIUWJ
论文笔记论文阅读
2024neurips1intro随着HuggingFace、timm和torchvision等开源仓库的发展,预训练与微调模型的数量激增,这导致模型部署的存储和成本负担加重。多任务学习(MTL)通过联合训练多数据集来部分缓解上述问题,但它存在以下缺陷:(i)计算成本高;(ii)隐私数据限制导致数据不可获取因此,近年来出现了**模型融合(modelmerging)**方法,试图通过权重合并的方式绕
- 模型优化-------模型压缩
AI扶我青云志
人工智能模型优化
模型压缩是一种优化技术,目标是在尽量保留模型性能的前提下,减少模型的体积、计算成本和内存占用。特别适合模型部署在边缘设备、移动端、嵌入式系统等资源受限环境中。其中,“剪枝(Pruning)、量化(Quantization)和知识蒸馏(KnowledgeDistillation)”是最常用且研究最深入的三种方法。一、剪枝(Pruning)原理:剪枝的核心思想是去掉对模型输出影响较小的参数或结构,使得
- 程序员管理与AIStarter开发:如何避免需求Bug,提升项目效率
ai_xiaogui
人工智能智能体国际化AI平台bug程序员管理AIStarter需求沟通避免BugAI模型一键部署教程
大家好,我是熊哥!今天聊聊程序员管理和AIStarter开发中的经验教训。创业公司项目常因需求不清出Bug,比如“管理员删管理员”这种低级错误,引发用户不满。熊哥亲测:程序员管理关键在于明确需求!通过整理需求文档、双向确认、开会逐条对齐,熊哥团队从Bug频发到第二个月问题骤减,AIStarter发布稳定。AIStarter专注AI模型部署(如Ollama),一键安装,免费为主,市场反馈超棒!总结:
- 边缘计算与量子模型优化驱动医疗诊断新突破
内容概要在医疗人工智能领域,边缘计算与量子模型优化的协同演进正重构诊断系统的技术范式。通过将计算节点前置至医疗设备端,边缘架构有效解决了传统云端模型面临的实时性瓶颈,配合量子优化算法对复杂特征空间的快速寻优能力,使得CT、MRI等高维影像数据的解析效率提升显著。值得关注的是,框架选型直接影响着模型部署的可行性——TensorFlow在移动端推理优化方面的工具链完备性,与PyTorch动态图机制对迭
- 从0构建 HarmonyOS 本地语音识别项目:Whisper 完整落地教程
观熵
国产大模型部署实战全流程指南harmonyos语音识别whisper深度学习机器学习
第一章:鸿蒙手机语音识别项目实战(基于Whisper本地推理)项目目标:构建一个可以在鸿蒙系统手机本地运行的语音识别应用,使用Whisper模型识别用户语音为文字,全程无需联网。1.为什么要在鸿蒙手机本地部署语音识别?在很多移动场景下(驾驶、弱网环境、隐私敏感场景等),云端语音识别存在如下痛点:⏳网络延迟高、体验割裂⚠️数据隐私风险大网络依赖强,弱网/无网直接无法使用而将语音识别模型部署在鸿蒙设备
- *SFT深度实践指南:从数据构建到模型部署的全流程解析
大千AI助手
人工智能Python#OTHER人工智能深度学习算法大模型SFT微调Lora
一、SFT技术原理与定位核心定义SFT是在预训练语言模型(如LLaMA、GPT)基础上,利用标注数据优化模型以适应特定任务的技术。其本质是通过调整模型参数,将通用语言能力迁移至专业领域(如法律、医疗)或任务(如对话生成、代码补全)。与预训练的区别预训练:使用无标注数据(如维基百科)学习通用表征,消耗千亿级token算力。SFT:使用标注数据(如指令-答案对)进行任务适配,成本仅为预训练的1/100
- YOLO11-obb使用C++及trt进行推理(详细版)
范男
c++目标检测计算机视觉YOLO图像处理
针对YOLO的使用.engine权重及C++代码进行推理使用TensorRT-YOLO项目网站是:https://github.com/laugh12321/TensorRT-YOLO可以直接选择git或者下载下来gitclonehttps://github.com/laugh12321/TensorRT-YOLOcdTensorRT-YOLO1.编译主程序教程网址是:https://github
- 大模型部署的整体架构
flyair_China
人工智能云计算架构
一、大模型部署架构1.1部署架构大模型部署的整体架构是一个多层次、软硬件协同的系统工程,旨在解决模型规模庞大、计算资源密集、延迟敏感等挑战。1.1.1、基础架构层:硬件资源与网络算力集群GPU/NPU阵列:如NVIDIAA100/H100/H200/H800、华为昇腾、昆仑芯等,支持FP16/INT8量化计算,显存带宽需达TB级(如HBM3e显存带宽达3.35TB/s)。异构计算:CPU+GPU/
- 借助 Amazon SageMaker Catalog 功能,简化从数据到洞察的路径
在数据驱动的时代,企业常陷于数据孤岛、特征重复开发、模型溯源困难等困境。AmazonSageMakerCatalog应运而生,作为统一的数据和特征治理中心,它能打通从原始数据到模型部署的全链路,显著加速数据科学项目落地。一、痛点:数据科学项目中的常见瓶颈数据发现困难:数据分散在S3、Redshift等不同存储中,缺乏统一视图特征管理混乱:特征工程脚本散落各处,无法复用和共享模型溯源缺失:无法追踪模
- 机器学习专栏(62):手把手实现工业级ResNet-34及调优全攻略
目录一、ResNet革命性突破解析1.1残差学习核心思想1.2ResNet-34结构详解二、工业级Keras实现详解2.1数据预处理流水线2.2完整模型实现三、模型训练调优策略3.1学习率动态调整3.2混合精度训练四、性能优化技巧4.1分布式训练配置4.2TensorRT推理加速五、实战应用案例5.1医疗影像分类5.2工业质检系统六、模型可视化分析6.1特征热力图6.2参数量分析七、常见问题解决方
- Python Gradio:快速搭建人脸识别应用
Python编程之道
Python人工智能与大数据Python编程之道python开发语言ai
PythonGradio:快速搭建人脸识别应用关键词:Python,Gradio,人脸识别,深度学习,计算机视觉,交互式应用,模型部署摘要:本文详细介绍了如何使用Python的Gradio库快速搭建一个交互式的人脸识别应用。我们将从基础概念出发,逐步讲解人脸识别的核心算法原理、Gradio的界面设计方法,并通过完整的项目实战演示如何将深度学习模型部署为可交互的Web应用。文章包含详细的代码实现、数
- ONNX模型使用指南:从零开始掌握跨领域模型部署
ONNX模型使用指南:从零开始掌握跨领域模型部署ONNX模型作为一种开放式的神经网络交换格式,已成为AI模型部署的行业标准。当您获得一个没有使用说明的ONNX模型时,可以通过系统化的分析和部署流程,使其在不同领域发挥作用。本文将详细阐述如何分析模型结构、配置运行环境、准备特定领域输入数据、执行推理并处理结果,同时提供图像分类、自然语言处理、医疗影像分析、金融风控和自动驾驶等领域的具体应用示例,帮助
- 英伟达Triton 推理服务详解
leo0308
基础知识机器人Triton人工智能
1.TritonInferenceServer简介TritonInferenceServer(简称Triton,原名NVIDIATensorRTInferenceServer)是英伟达推出的一个开源、高性能的推理服务器,专为AI模型的部署和推理服务而设计。它支持多种深度学习框架和硬件平台,能够帮助开发者和企业高效地将AI模型部署到生产环境中。Triton主要用于模型推理服务化,即将训练好的模型通过
- PyTorch & TensorFlow速成复习:从基础语法到模型部署实战(附FPGA移植衔接)
阿牛的药铺
算法移植部署pytorchtensorflowfpga开发
PyTorch&TensorFlow速成复习:从基础语法到模型部署实战(附FPGA移植衔接)引言:为什么算法移植工程师必须掌握框架基础?针对光学类产品算法FPGA移植岗位需求(如可见光/红外图像处理),深度学习框架是算法落地的"桥梁"——既要用PyTorch/TensorFlow验证算法可行性,又要将训练好的模型(如CNN、目标检测)转换为FPGA可部署的格式(ONNX、TFLite)。本文采用"
- 模型实战(21)之 C++ - tensorRT部署yolov8-det 目标检测
明月醉窗台
#深度学习实战例程人工智能c++YOLO目标检测计算机视觉人工智能
C++-tensorRT部署yolov8-det目标检测python环境下如何直接调用推理模型转换并导出:pt->onnx->.engineC++tensorrt部署检测模型不写废话了,直接上具体实现过程+all代码1.Python环境下推理直接命令行推理,巨简单yolodetectpredictmodel=yolov8n.ptsource='https
- 边缘人工智能与医疗AI融合发展路径:技术融合与应用前景(上)
Allen_Lyb
数智化医院2025人工智能健康医疗算法
引言人工智能技术正以前所未有的速度改变着医疗保健领域,从辅助诊断到个性化治疗,AI应用的广度和深度不断拓展。在这一浪潮中,边缘人工智能(EdgeAI)作为一种新兴技术范式,正成为推动医疗AI创新的关键力量。边缘AI区别于传统的云计算模式,它将数据处理和AI模型部署在数据源头附近,实现快速响应和隐私保护。这种特性使其在医疗保健领域具有独特优势,特别是在实时监测、紧急响应和患者隐私保护等方面。边缘AI
- 【深度学习】大模型GLM-4-9B Chat ,微调与部署(3) TensorRT-LLM、TensorRT量化加速、Triton部署
XD742971636
深度学习机器学习深度学习人工智能
文章目录获取TensorRT-LLM代码:构建docker镜像并安装TensorRT-LLM:运行docker镜像:安装依赖魔改下部分package代码:量化:构建图:全局参数插件配置常用配置参数测试推理是否可以代码推理CLI推理性能测试小结验证是否严重退化使用NVIDIATriton部署在线推理服务器代码弄下来编译镜像启动容器安装依赖量化构建trtengines图Triton模板说明实操发起Tr
- Jetson Orin NX Super安装TensorRT-LLM
u013250861
#LLM/部署&推理elasticsearch大数据搜索引擎
根据图片中显示的JetsonOrinNXSuper系统环境(JetPack6.2+CUDA12.6+TensorRT10.7),以下是针对该平台的TensorRT-LLM安装优化方案:一、环境适配调整基于你的实际配置:JetPack6.2(含CUDA12.6,TensorRT10.7)Python3.10.12aarch64架构需选择适配的TensorRT-LLM版本。由于官方预编译包可能未覆盖此
- TensorRT-LLM:大模型推理加速引擎的架构与实践
前言:技术背景与发展历程:随着GPT-4、LLaMA等千亿级参数模型的出现,传统推理框架面临三大瓶颈:显存占用高(单卡可达80GB)、计算延迟大(生成式推理需迭代处理)、硬件利用率低(Transformer结构存在计算冗余)。根据MLPerf基准测试,原始PyTorch推理的token生成速度仅为12.3tokens/s(A100显卡)。一、TensorRT-LLM介绍:TensorRT-LLM是
- 一文读懂 Sigmoid 与 Hard Sigmoid 激活函数:从原理到量化部署
算法自动驾驶
在神经网络训练与部署中,激活函数扮演着关键角色,不仅影响模型训练过程,也直接决定了模型部署到实际设备后的性能表现。本文将介绍两种常用激活函数:Sigmoid和HardSigmoid,全面对比它们的原理、优缺点、应用场景,并提供实际代码示例,帮助你更好地理解与使用它们,尤其是在量化和嵌入式设备部署场景中。一、Sigmoid与HardSigmoid简介1.1Sigmoid激活函数介绍Sigmoid激活
- 【机器学习笔记 Ⅱ】10 完整周期
机器学习的完整生命周期(End-to-EndPipeline)机器学习的完整周期涵盖从问题定义到模型部署的全过程,以下是系统化的步骤分解和关键要点:1.问题定义(ProblemDefinition)目标:明确业务需求与机器学习任务的匹配性。关键问题:这是分类、回归、聚类还是强化学习问题?成功的标准是什么?(如准确率>90%、降低10%成本)输出:项目目标文档(含评估指标)。2.数据收集(DataC
- 【TensorRT】TensorRT及加速原理
浩瀚之水_csdn
tensorrt
一、TensorRT架构概览TensorRT是NVIDIA推出的高性能推理优化器,专为GPU加速设计。其核心架构分为三层:前端解析器支持ONNX/UFF/Caffe等格式的模型解析执行格式验证和初步结构优化优化引擎核心优化层(层融合、精度校准、内存优化等)生成优化后的计算图(OptimizedGraph)运行时环境管理GPU内存分配执行优化后的计算图二、核心加速原理(8大关键技术)1.层融合(La
- 超详细yolov8/11-segment实例分割全流程概述:配置环境、数据标注、训练、验证/预测、onnx部署(c++/python)详解
因为yolo的检测/分割/姿态/旋转/分类模型的环境配置、训练、推理预测等命令非常类似,这里不再详细叙述,主要参考**【YOLOv8/11-detect目标检测全流程教程】**,下面有相关链接,这里主要针对数据标注、格式转换、模型部署等不同细节部分;【YOLOv8/11-detect目标检测全流程教程】超详细yolo8/11-detect目标检测全流程概述:配置环境、数据标注、训练、验证/预测、o
- 使用TVM编译部署DarkNet模型:YOLO-V2和YOLO-V3实战指南
周情津Raymond
使用TVM编译部署DarkNet模型:YOLO-V2和YOLO-V3实战指南tvm-cnTVMDocumentationinChineseSimplified/TVM中文文档项目地址:https://gitcode.com/gh_mirrors/tv/tvm-cn前言在深度学习模型部署领域,TVM作为一个高效的深度学习编译器栈,能够将训练好的模型优化并部署到各种硬件平台上。本文将详细介绍如何使用T
- 对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
- android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
- [读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
- 随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
- PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
- 银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
- Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
- php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
- 安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
- java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
- getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
- 探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
- [MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
- 【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
- Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
- No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
- Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
- MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
- 小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
- hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
- Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
- Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
- java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
- 【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
- 自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
- jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
- ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
- 利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
- Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
- hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul