- MNIST 手写数字识别模型分析
橘子编程
Python学习指南pythonmatplotlib
功能概述这段代码实现了一个基于TensorFlow和Keras的MNIST手写数字识别模型。主要功能包括:加载并预处理MNIST数据集构建一个简单的全连接神经网络模型训练模型并评估其性能使用训练好的模型进行预测保存和加载模型代码解析1.导入必要的库importmatplotlibimporttensorflow.kerasaskerasimporttensorflowastfimportnumpy
- 为什么用Pytorch帮客户训练好了模型还要提供模型结构?
yuanpan
pytorch人工智能机器学习
如果我在训练模型后生成好了一个模型文件:mnist_model.pth我想把这个模型文件给第三方使用,而不告诉他模型定义的结构等信息,那么第三方是不是就用不起来这个模型?答案:是的。如果只提供.pth文件而不告知模型结构,第三方确实无法直接使用该模型。原因和解决方案如下:1.为什么无法直接使用?.pth文件仅保存参数:torch.save(model.state_dict(),'mnist_mod
- YOLOv8实现手写数字识别系统:从MNIST到实时摄像头检测
在深度学习领域,手写数字识别是一个经典问题,也是入门计算机视觉的重要案例。本文将介绍一个基于YOLOv8和MNIST数据集的手写数字识别系统,该系统不仅能识别静态图像中的数字,还能通过摄像头实时检测手写数字。个人博客:YOLOv8实现手写数字识别系统:从MNIST到实时摄像头检测-iDing's博客项目概述这个项目结合了传统的MNIST数据集和现代的目标检测算法YOLOv8,实现了以下功能:将MN
- YOLO V8+Python训练手写数字识别
yuanpan
YOLOpython开发语言
以下是针对Windows11+Python环境的详细步骤说明,从数据集整理到模型训练,全部适配YOLOv8流程。1.数据集整理(MNIST→YOLO格式)1.1下载MNIST数据集MNIST数据集可通过Python直接下载(无需手动下载):python复制fromtorchvision.datasetsimportMNISTimportos#自动下载MNIST数据集(图片和标签)train_dat
- 模型移植实战:从PyTorch到ONNX完整指南
慕婉0307
神经网络pytorch人工智能python
一、认识ONNXONNX(OpenNeuralNetworkExchange)是一种开放的模型表示格式,由微软和Facebook(现Meta)在2017年共同推出,旨在解决深度学习模型在不同框架之间的互操作性问题。ONNX的主要优势包括:跨框架兼容性:支持主流深度学习框架间的模型转换,包括PyTorch、TensorFlow、MXNet、CNTK等例如,可以将PyTorch训练的ResNet模型导
- 神经网络项目--基于FPGA的AI简易项目(1-9图片数字识别)
霖12
深度学习pytorch神经网络fpga开发人工智能机器学习
1.训练MNIST模型importtorch#导入pytorch核心库importtorch.nnasnn#神经网络模块,如卷积层importtorch.optimasoptim#优化器fromtorchvisionimportdatasets,transforms#数据集与图像预处理工具#定义CNN模型classSimpleCNN(nn.Module):#PyTorch库中所有神经网络的“基础模
- MikroTik RouterOS 6.49.2 x86_64架构 L6全功能版本
伍熠逸Peg
MikroTikRouterOS6.49.2x86_64架构L6全功能版本【下载地址】MikroTikRouterOS6.49.2x86_64架构L6全功能版本这是一个基于MikroTikRouterOS6.49.2的OVA虚拟机版本,专为x86_64架构设计,搭载L6级全功能许可,支持升级至7.x版本。该版本已集成vmxnet3万兆网卡驱动,并支持2GB以上内存,适用于VMwareWorksta
- 科研:diffusion生成MNIST程序实现
Menger_Wen
科研:diffusion人工智能机器学习stablediffusionpython
科研:diffusion生成MNIST程序实现第一部分:填写部分的详细解释1.`diffusion.py`中的`batch_extend_like`方法2.`diffusion.py`中的`ode_reverse`方法3.`sde_schedule.py`中的`sde_forward`方法第二部分:逐行解释两个程序1.`diffusion.py`(Diffusion类)`__init__`方法`b
- 用PyTorch实现MNIST手写数字识别
MNIST包含70,000张手写数字图像:60,000张用于培训,10,000张用于测试。图像是灰度的,28x28像素的,并且居中的,以减少预处理和加快运行。1、导入相关库importtorchimporttorchvisionfromtorch.utils.dataimportDataLoaderimporttorch.nnasnnimporttorch.nn.functionalasFimpo
- PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别
PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别大家好!欢迎来到我的深度学习博客!对于每个踏入计算机视觉领域的人来说,MNIST手写数字识别就像是编程世界的“Hello,World!”。它足够简单,能够让我们快速上手;也足够完整,可以帮我们走通一个深度学习项目的全流程。之前我们可能用Keras体验过“搭积木”式的快乐,今天,我们将换一个同样强大且灵活的框架——PyTorch,
- Class5多层感知机的从零开始实现
Morning的呀
深度学习深度学习机器学习pytorch
Class5多层感知机的从零开始实现importtorchfromtorchimportnnfromd2limporttorchasd2l#设置批量大小为256batch_size=256#初始化训练集和测试集迭代器,每次训练一个批量train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)#构建一个单隐藏层的前馈神经网络(MLP)#n
- Python实例题:基于 KNN 算法的手写数字识别
目录Python实例题题目要求:解题思路:代码实现:Python实例题题目基于KNN算法的手写数字识别要求:实现一个基于K-NearestNeighbors(KNN)算法的手写数字识别系统。支持以下功能:使用MNIST数据集训练和测试模型实现KNN分类算法可视化手写数字样本评估模型性能(准确率、混淆矩阵等)添加用户交互界面,允许用户绘制数字并进行识别。解题思路:使用sklearn加载MNIST数据
- Densenet模型花卉图像分类
深度学习乐园
分类数据挖掘人工智能
项目源码获取方式见文章末尾!600多个深度学习项目资料,快来加入社群一起学习吧。《------往期经典推荐------》项目名称1.【基于CNN-RNN的影像报告生成】2.【卫星图像道路检测DeepLabV3Plus模型】3.【GAN模型实现二次元头像生成】4.【CNN模型实现mnist手写数字识别】5.【fasterRCNN模型实现飞机类目标检测】6.【CNN-LSTM住宅用电量预测】7.【VG
- python打卡训练营Day41
珂宝_
python打卡训练营python
importnumpyasnpfromtensorflowimportkerasfromtensorflow.kerasimportlayers#加载和预处理数据(x_train,y_train),(x_test,y_test)=keras.datasets.mnist.load_data()x_train=x_train.reshape(-1,28,28,1).astype("float32")
- 基于PyTorch的MNIST手写数字识别(配置手写板使用)
热心不起来的市民小周
CV项目实操pytorch人工智能python
基于PyTorch的MNIST手写数字识别(配置手写板使用)代码详见:https://github.com/xiaozhou-alt/CNN_MNIST文章目录基于PyTorch的MNIST手写数字识别(配置手写板使用)一、项目介绍二、数据集介绍三、项目实现1.环境准备2.项目文件夹结构3.数据预处理4.开始训练!(1)数据加载(2)数据转换(3)模型定义(4)训练过程(5)评估测试四、结果展示一
- 以numpy或Torch的格式存储的公开数据集
以科技求富强
多模态聚类学习数据库python大数据database
现有的以numpy或Torch的格式存储的公开数据集1.**MNIST**2.**CIFAR-10/CIFAR-100**3.**ImageNet**4.**COCO(CommonObjectsinContext)**5.**PascalVOC**6.**Fashion-MNIST**7.**BostonHousing**8.**Iris**9.**KITTI**10.**CelebA**11.*
- 深度学习--一个分类的例子
惊讶的猫
人工智能深度学习机器学习
说明:本文会实现自定义模型实现对MINIST数据集的训练,训练完之后还会使用测试集进行测试。所依托的训练集和测试集都是由datasets.MNIST获取到的。步骤下载数据现在来介绍加载MNIST数据集并准备训练和测试数据的逻辑。数据预处理:transforms.Compose创建了一个数据预处理管道,将多个数据转换操作组合在一起。将图像转换为PyTorch的张量(tensor).对图像进行标准化,
- 【动手学深度学习】4.2~4.3 多层感知机的实现
XiaoJ1234567
《动手学深度学习》深度学习人工智能MLP多层感知机
目录4.2.多层感知机的从零开始实现1)初始化模型参数2)激活函数3)模型4)损失函数5)训练4.3.多层感知机的简洁实现1)模型2)小结.4.2.多层感知机的从零开始实现现在让我们实现一个多层感知机。为了与之前softmax回归获得的结果进行比较,我们将继续使用Fashion-MNIST图像分类数据集。importtorchfromtorchimportnnfromd2limporttorcha
- Python实现简单的深度学习实践
master_chenchengg
pythonpythonPythonpython开发IT
Python实现简单的深度学习实践Python:通往深度学习世界的钥匙动手搭建你的第一个神经网络模型从零开始,用Python解析MNIST手写数字识别超越基础:使用Keras快速构建卷积神经网络实战演练:训练一个简单的图像分类器Python:通往深度学习世界的钥匙在当今这个数据驱动的时代,Python无疑成为了打开深度学习大门的金钥匙。它不仅语法简洁、易于上手,而且拥有强大的社区支持和丰富的库资源
- 深度学习“炼丹”实战:用LeNet驯服MNIST“神兽”
AI妈妈手把手
深度学习人工智能LeNetcnn模型训练学习笔记MNIST
宝子们,在深度学习的神秘世界里,咱们就像一群“炼丹师”,而模型就是咱们精心炼制的“丹药”,数据集则是炼丹的“原材料”。今天,咱们就用经典的LeNet卷积神经网络模型,在MNIST手写数字数据集这个“原材料宝库”里,炼制出一颗能精准识别数字的“神奇丹药”!LeNet网络结构回顾,见:深度学习图像分类六大经典网络结构全解析一、MNIST数据集:炼丹的“珍贵原料”MNIST数据集可是深度学习界的“老牌明
- pytorch深度学习入门(12)之-神经网络导出onnx模型部署与应用
码农呆呆
深度学习深度学习pytorch神经网络
概述:ONNX(OpenNeuralNetworkExchange)是一种开放神经网络交换格式,它使得不同深度学习框架(如TensorFlow、PyTorch、MXNet等)之间的互操作成为可能。ONNX提供了一种标准化的方式,可以将训练好的模型导出并转换为ONNX格式,然后可以在其他支持ONNX的框架或工具中进行部署和推理。ONNX的主要优势在于它促进了深度学习模型在不同平台之间的互操作性和可移
- 【深度学习-Day 23】框架实战:模型训练与评估核心环节详解 (MNIST实战)
吴师兄大模型
深度学习入门到精通深度学习人工智能pythonMNIST大模型pytorchLLM
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 如何用PyTorch构建第一个神经网络?——从环境搭建到实战部署的零基础指南
唐宇迪(学习规划+技术答疑)
pytorch神经网络人工智能深度学习机器学习计算机视觉自然语言处理
大家好,我是唐宇迪。这几年带学员入门深度学习时,发现90%的新手都会卡在「第一个神经网络构建」上:有人装环境时被CUDA版本搞晕,有人写模型时分不清nn.Module和nn.Sequential,还有人训练时遇到梯度不更新的问题。作为PyTorch官方认证讲师,今天我将用10万+学员验证过的「七步教学法」,带你从环境搭建到实战部署,亲手搭建你的第一个神经网络——MNIST手写数字识别模型,准确率轻
- 《动手学深度学习》-2.1. 数据操作
SSWDUT
动手学深度学习深度学习人工智能
2.1.数据操作为了能够完成各种数据操作,我们需要某种方法来存储和操作数据。通常,我们需要做两件重要的事:(1)获取数据;(2)将数据读入计算机后对其进行处理。如果没有某种方法来存储数据,那么获取数据是没有意义的。首先,我们介绍n维数组,也称为张量(tensor)。使用过Python中NumPy计算包的读者会对本部分很熟悉。无论使用哪个深度学习框架,它的张量类(在MXNet中为ndarray,在P
- caffe之利用mnist数据集训练好的lenet_iter_10000.caffemodel模型测试一张自己的手写体数字
xunan003
深度学习caffe
一、前沿写这篇博文,是因为一开始在做《21天学习caffe》第6天6.4练习题1的时候看着自己搜索的博文,在不理解其根本的情况下做的,结果显然是错的。在接下来阅读完源代码之后,在第10天学习完caffemodelzoo之后,明白了其中原理,反过来再去做那个习题,一开始在网上搜索并没有完完整整解释整个过程的一篇博文,而是写的不知所云,本着我们初学者互相共享的精神,也方便自己查阅,特详细写一下,将自己
- 深度学习——基于卷积神经网络的MNIST手写数字识别详解
E-An居士
深度学习cnn人工智能手写数字识别卷积神经网络
文章目录引言1.环境准备和数据加载1.1下载MNIST数据集1.2数据可视化2.数据预处理3.设备配置4.构建卷积神经网络模型5.训练和测试函数5.1训练函数5.2测试函数6.模型训练和评估6.1初始化损失函数和优化器6.2训练过程7.关键点解析8.完整代码9.总结引言手写数字识别是计算机视觉和深度学习领域的经典入门项目。本文将详细介绍如何使用PyTorch框架构建一个卷积神经网络(CNN)来实现
- Python----神经网络发(神经网络发展历程)
蹦蹦跳跳真可爱589
Python深度学习神经网络计算机视觉神经网络人工智能深度学习python
年份网络名称突出点主要成就论文地址1989LeNet首个现代卷积神经网络(CNN),引入卷积、池化操作手写数字识别先驱,奠定CNN基础MNISTDemosonYannLeCun'swebsite2012AlexNet首次大规模使用深度卷积神经网络进行图像识别;引入ReLU、Dropout、重叠池化、GPU加速;大规模数据增强。2012年ImageNet图像识别竞赛冠军,Top-5错误率远低于第二名
- AI基础知识(07):基于 PyTorch 的手写体识别案例手册
陈天伟教授
人工智能(AI)pytorch人工智能python
目录实验介绍实验对象实验时间实验流程实验介绍随着人工智能技术的飞速发展,图像识别技术在众多领域得到了广泛应用。手写体识别作为图像识别的一个重要分支,其在教育、金融、医疗等领域具有广泛的应用前景。本实验旨在利用深度学习框架PyTorch,结合MNIST手写体数据集,构建一个高效、准确的手写体识别系统,本实验是在云主机中安装PyCharm,并且基于PyTorch框架的手写体识别的案例。本实验采用的MN
- PyTorch:让深度学习像搭积木一样简单有趣!
pythonpapaxia
深度学习pytorch人工智能其他
文章目录一、张量:PyTorch世界的万能积木块⚡二、动态计算图:你的神经网络"乐高说明书"三、神经网络模块化:像堆积木一样建模型四、训练三板斧:优化器/损失函数/数据加载1.数据管道(Dataset+DataLoader)2.损失函数选择指南3.优化器对比五、完整训练流程实战(MNIST手写数字识别)六、避坑指南&性能加速技巧常见坑点:加速秘籍:七、生态拓展:PyTorch的梦幻工具箱行动起来!
- 使用 PyTorch 和 SwanLab 实时可视化模型训练
猎嘤一号
pytorch深度学习人工智能
以下是一个使用PyTorch和SwanLab实现训练可视化监控的完整示例,以MNIST手写数字识别为例:importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorch.utils.dataimportDataLoaderfromtorchvisionimportdatasets,transformsimportswanlab#初始化Sw
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro