poj3734(矩阵幂)

/*
translation:
	用红、黄、蓝、绿四种颜色对n个砖块进行染色。问红、绿砖块都为偶数的方案总共有多少种?
solution:
	矩阵幂,小白书p203
	设染到第i块时红绿砖块都为偶数的方案为ai,红绿砖块一奇一偶方案数为bi,红绿都是奇数的方案数为ci
	则可以有如下的递推:
	a(i+1) = 2*ai + bi
	b(i+1) = 2*ai + 2*bi + 2*ci
	c(i+1) = bi + 2*ci
	即可化成矩阵幂的问题
note:
	* 解决矩阵幂问题的关键是找出递推式
date:
	2017.1.17
*/
#include 
#include 
#include 

using namespace std;
const int M = 10007;

typedef vector vec;
typedef vector mat;
typedef long long ll;

ll n;

mat multi(mat &a, mat &b)
{
	mat ans(a.size(), vec(b[0].size()));
	for(int i = 0; i < a.size(); i++) {
		for(int j = 0; j < b[0].size(); j++) {
			for(int k = 0; k < b.size(); k++) {
				ans[i][j] = (ans[i][j] + a[i][k]*b[k][j]) % M;
			}
		}
	}
	return ans;
}

mat pow(mat a, int k)	//求矩阵a的k次方
{
	mat temp(a.size(), vec(a.size()));
	for(int i = 0; i < a.size(); i++)	temp[i][i] = 1;

	while(k) {
		if(k & 1)	temp = multi(a, temp);
		a = multi(a, a);
		k /= 2;
	}
	return temp;
}

int main()
{
	int T;
	cin >> T;
	while(T--) {
		cin >> n;
		mat a(3, vec(3));
		a[0][0] = 2;	a[0][1] = 1;	a[0][2] = 0;
		a[1][0] = 2;	a[1][1] = 2;	a[1][2] = 2;
		a[2][0] = 0;	a[2][1] = 1;	a[2][2] = 2;
		a = pow(a, n);
		cout << a[0][0] << endl;
	}
    return 0;
}

你可能感兴趣的:(=====动态规划=====,计数dp)