Now I think you have got an AC in Ignatius.L’s “Max Sum” problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S 1, S 2, S 3, S 4 … S x, … S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + … + S j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + … + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).
But I`m lazy, I don’t want to write a special-judge module, so you don’t have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. _
Each test case will begin with two integers m and n, followed by n integers S 1, S 2, S 3 … S n.
Process to the end of file.
Output the maximal summation described above in one line.
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
6
8
Huge input, scanf and dynamic programming is recommended.
在n个数中选出m组数, 每组数连续且不能相交, 求出最大的各组数的和
#include
#include
#include
#include
using namespace std;
#define ms(x, n) memset(x,n,sizeof(x));
typedef long long LL;
const LL maxn = 1e6+10;
const int inf = 1<<30;
int m, n, a[maxn], dp[maxn];
int lastMax[maxn]; //i-1时前j个数的最大dp
int main()
{
while(scanf("%d%d",&m,&n)!=EOF){
for(int i = 1; i <= n; i++)
scanf("%d",&a[i]);
ms(dp, 0); dp[0]=-inf;
ms(lastMax, 0)
int mmax;
for(int i = 1; i <= m; i++){
mmax = -inf;
for(int j = i; j <= n; j++){
dp[j] = max(dp[j-1]+a[j], lastMax[j-1]+a[j]);
lastMax[j-1] = mmax;
mmax = max(mmax, dp[j]);
}
}
printf("%d\n",mmax);
}
return 0;
}