- 19.0-《超越感觉》-说服他人
SAM52
Becausethoughtfuljudgmentsdeservetobeshared,andthewaytheyarepresentedcanstronglyinfluencethewayothersreacttothem.因为经过深思熟虑的判断值得分享,而这些判断的呈现方式会强烈影响其他人对它们的反应。Bylearningtheprinciplesofpersuasionandapplying
- 2018年中南大学中英翻译
某翁
参考:20180827235856533.jpg【1】机器学习理论表明,机器学习算法能从有限个训练集样本上得到较好的泛化【1】Machinelearningtheoryshowsthatmachinelearningalgorithmcangeneralizewellfromfinitetrainingsetsampleslimited有限的infinite无限的【2】这似乎违背了一些基本的逻辑准
- 如何在 Ubuntu 24.04 或 22.04 Linux 上安装和使用 NoMachine
山岚的运维笔记
Linux运维及使用linuxubuntu运维nomachine远程连接
NoMachine是一款适用于Linux(Ubuntu)及其他支持的操作系统的远程桌面应用程序,允许用户通过本地或远程系统从世界任何地方控制计算机。它可以在低带宽连接下工作,被专业人士和家庭用户广泛使用。NoMachine的主要功能高性能远程访问跨平台兼容性易于使用,因为用户界面友好提供强大的加密协议,如SSH、SSL及其他安全标准支持远程文件传输和打印服务允许从远程计算机进行音频和视频流媒体传输
- Python STL概念学习与代码实践
体制教科书
本文还有配套的精品资源,点击获取简介:通过”py_stl_learning”项目,学习者可以使用Python实现和理解C++STL的概念,包括数据结构、算法、容器适配器、模板和泛型容器等。Python中的列表、集合、字典等数据结构与STL中的vector、set、map等类似,而Python的itertools和functools模块提供了STL风格的算法功能。Python通过其面向对象的特性以及
- 4.ESP32-按键实验
老蒋精髓
microPython4.ESP32
4.ESP32-按键实验"""按键实验2022.10.9"""frommachineimportPinimporttimekey1=Pin(4,Pin.IN,Pin.PULL_UP)#GPIO2,设置为输出模式,输入模式为Pin.IN,设置为上拉key2=Pin(5,Pin.IN,Pin.PULL_UP
- 每周一段仿写-181028
Zeroun_Ph
Theneedfornewlearningstylesdoesnotmeanignoringthewaysinthepast.TheInternetagebringssomechallengesnotseenbefore,mostobviouslyandmostworryinglyuselessinformationblast.Butfragmentationoflearningandtheine
- 考研长难句-1-29
EasyNetCN
Onfirstlearning,thiswasthesociallyconcernedchancellortryingtochangelivesforthebetter,completewith"reforms"toanobviouslyindulgentsystemthatdemandstoolittleeffortfromthenewlyunemployedtofindwork,andsubs
- 强化学习入门三(SARSA)
第六五签
算法模型算法人工智能
SARSA算法详解SARSA是强化学习中另一种经典的时序差分(TD)学习算法,与Q-Learning同属无模型(model-free)算法,但在更新策略上有显著差异。SARSA的名称来源于其更新公式中涉及的五个元素:状态(State)、动作(Action)、奖励(Reward)、下一状态(NextState)、下一动作(NextAction),即(S,A,R,S’,A’)。SARSA与Q-Lear
- 如何评价开课吧机器学习特训营这个课程?
cda2024
机器学习人工智能
开场:点明主题,吸引眼球在当今数据驱动的时代,机器学习(MachineLearning)已经成为各个行业不可或缺的技术之一。无论是金融、医疗、制造还是零售,机器学习的应用都为这些领域带来了巨大的变革。面对这样的趋势,许多人都希望能够掌握这门技术,从而提升自己的职业竞争力。那么,当我们谈论“如何评价开课吧机器学习特训营这个课程”时,实际上是在探讨一个非常具体且重要的问题:对于那些希望进入或深入机器学
- 表征学习:机器认知世界的核心能力与前沿突破
大千AI助手
人工智能#OTHERPython学习人工智能机器学习神经网络表征学习RL特征工程
一、定义与背景:从特征工程到自动化学习表征学习(RepresentationLearning),又称特征学习(FeatureLearning),是机器学习的核心技术领域,其核心目标是通过算法自动学习数据的内在特征表示,将复杂多变的原始数据(如图像、文本、语音)转化为低维、富含语义信息的向量形式,从而提升下游任务(如分类、回归、聚类)的效率和精度。与传统依赖人工设计特征的特征工程(FeatureEn
- 踏上人工智能之旅(一)-----机器学习之knn算法
Sunhen_Qiletian
人工智能机器学习算法python
目录一、机器学习是什么(1)概述(2)三种类型1.监督学习(SupervisedLearning):2.无监督学习(UnsupervisedLearning):3.强化学习(ReinforcementLearning):二、KNN算法的基本原理:1.距离度量:2.K值的选择:3.投票机制和投票:三、Python实现KNN算法1.导入必要的库和数据:2.提取特征和标签:3.导入KNN分类器并训练模型
- Place
JillionZ
PLACE是美国的JayMcSwain提出的开发子女才能的工具。PLACE是指在五个领域发现子女的才能。P(Personalitydiscovery)性格类型L(Learningspiritualgifts)天生的才能A(AbilitiesAwareness)能力C(Connectingpassionwithministry)热情E(Experiencesoflife)人生经历作为父母,要充分了解
- 读心与芯:我们与机器人的无限未来05未来之路
躺柒
机器人机器人学人工智能大数据分析智能计算
1.概念1.1.利用数据确定模式,描述数据集的某些属性,基于过去的经历判断未来可能发生什么,或基于当前发生的事情判断后果或反应1.2.机器学习(machinelearning)是人工智能的一个子集,它不需要显式编程,为系统提供自动学习和根据经验改进的能力1.2.1.机器学习算法基于样本数据(又称训练数据)构建模型,在未经显式编程的情况下对未来数据做出预测或决策1.2.2.机器学习有多种类型,包括有
- 虚拟机局域网拓扑图_多台虚拟机搭建模拟网络环境
weixin_39523529
虚拟机局域网拓扑图
目的采用多台虚拟机在一台计算机实体上模拟一个小型的网络环境。我们采用虚拟机(VirtualMachine)软件来模拟一个网络环境进行实验,这类软件的主要功能是利用软件来模拟出具有完整硬件系统功能的且运行在隔离环境中的完整计算机系统。这样我们可以在一台物理计算机即宿主机器(HostMachine)上模拟出一台或多台虚拟的计算机。这些虚拟机能够像真正的计算机那样进行工作,我们可以在其上安装全新的操作系
- 可用于AI Agent集成和多种系统之间联调Windows下GCC的C++虚拟机项目
weixin_30777913
c++windows系统架构
下面是一个完整的C++虚拟机项目设计,实现了所有需求功能,包括虚拟磁盘管理、操作系统安装、I/O重定向和网络转发等功能。可用于AIAgent的集成,全自动设计开发测试Linux下和Windows与Linux联动软件。整体架构设计VMController-config:Config-vdisk:VDiskManager-vm:VirtualMachine-logger:shared_ptr+run(
- 实验七 SVM支持向量机
萍萍无奇a
支持向量机机器学习人工智能
目录一、SVM定义二、SVM基本概念及其优缺点1、间隔2、SVM核心3、支持向量4、支持向量机的基本思想5、优缺点三、损失函数四、代码实现1、算法实现基本流程2、代码解析3、整体代码五、结果截图及解释1、结果截图2、结果解释六、实验总结一、SVM定义支持向量机(SupportVectorMachine,SVM)是一种经典的监督学习算法,用于解决二分类和多分类问题。其核心思想是通过在特征空间中找到一
- 深度学习的图像分类项目在制造业场景下的数据需求量估算及实现方案(数据收集是The more the better 吗?)
shiter
人工智能系统解决方案与技术架构深度学习分类人工智能
文章大纲一、数据需求的关键影响因素二、无先验知识场景的数据需求估算优化策略与技术方案三、有先验知识场景的数据需求估算1.迁移学习(TransferLearning)2.少样本学习(Few-ShotLearning)3.预训练-微调范式四、实现方案与技术路线1.数据策略层2.模型架构层3.训练优化技术五、结论与实践建议无先验知识场景有先验知识场景✅**正确性校验**⚠️**可落地性勘误与补充****
- 机器学习从入门到实践:算法、特征工程与模型评估详解
目录摘要1.引言2.机器学习概述2.1什么是机器学习?2.2机器学习的发展历史2.3机器学习的应用3.机器学习算法分类3.1监督学习(SupervisedLearning)3.2无监督学习(UnsupervisedLearning)3.3半监督学习(Semi-SupervisedLearning)4算法详解4.1分类算法详解(1)逻辑回归(LogisticRegression)(2)决策树(Dec
- Deja Vu: 利用上下文稀疏性提升大语言模型推理效率
AI专题精讲
模型加速人工智能模型加速AI技术应用
温馨提示:本篇文章已同步至"AI专题精讲"DejaVu:利用上下文稀疏性提升大语言模型推理效率摘要拥有数百亿参数的大语言模型(LLMs)催生了一系列令人振奋的AI应用。然而,在推理阶段它们计算开销极大。稀疏化是一种自然的降本策略,但现有方法要么需要代价高昂的重新训练,要么必须放弃LLM的“in-contextlearning”能力,要么在现代硬件上无法带来真实的墙钟时间加速。我们提出**上下文稀疏
- 小丁的ScalersTalk第五轮新概念朗读持续力训练Day43-20191204
丁丁水天
1.练习材料Lesson55NotagoldmineDreamsoffindinglosttreasurealmostcametruerecently.Anewmachinecalled'TheRevealer'hasbeeninventedandithasbeenusedtodetectgoldwhichhasbeenburiedintheground.Themachinewasusedinac
- 参考文献 字体 latex_字体参考| HTML
cumtv80668
linuxpythonhtmlwindowsjava
参考文献字体latexFontsarebasicallyplatformeddependentorinsimplewords,wecansaythattheyarespecifictotheplatform.Wewillhavedifferentlookandfeelofawebpageondifferentmachinesrunningondifferentoperatingsystemssuc
- 用KNN算法入门机器学习:原理、实战与代码详解
TJDG567
算法机器学习人工智能k近邻算法
引言K最近邻(K-NearestNeighbors,KNN)是机器学习中最简单且直观的算法之一,非常适合分类和回归任务。它的核心思想是“物以类聚”,即相似的数据点在特征空间中通常属于同一类别。本文将深入浅出地讲解KNN的原理、优缺点、应用场景,并通过Python代码实战演示如何实现一个完整的KNN分类任务。1.KNN算法原理1.1算法概述KNN是一种**惰性学习(LazyLearning)**算法
- c语言程序设计猜拳小游戏答辩,C语言课程设计-猜拳游戏
weixin_39558221
c语言程序设计猜拳小游戏答辩
C语言课程设计-猜拳游戏C语言课程设计-猜拳游戏|c语言程序代码编程小程序设计|c语言课程设计报告课程案例enump_r_s{paper,rock,scissors,game,help,instructions,quit};#includemain(){enump_r_splayer,machine;enump_r_sselection_by_player(),selection_by_machi
- 学习日记-机器学习2-线性回归/成本函数
目录4LinerRegressionModel线性回归模型5costFunction成本函数4LinerRegressionModel线性回归模型Thelinearregressionmodelisaparticulartypeofsupervisedlearningmodel.TerminologyTrainingset(训练集):DatausedtotrainthemodelNotationx
- 计算机视觉:少样本学习(Few-Shot Learning)在视觉中的应用
xcLeigh
计算机视觉CV计算机视觉学习人工智能FSLAI
计算机视觉:少样本学习(Few-ShotLearning)在视觉中的应用一、前言二、少样本学习基础概念2.1定义与范畴2.2与传统机器学习对比2.3核心挑战三、少样本学习在计算机视觉中的典型应用3.1图像分类3.1.1新类别识别3.1.2医学图像分类3.2目标检测3.2.1新目标检测3.2.2小目标检测3.3图像分割3.3.1医学图像分割3.3.2工业缺陷检测四、少样本学习在计算机视觉中的技术方法
- 深度学习×总结篇:她终于能走完每一次前向与反向的路
Gyoku Mint
AI修炼日记人工智能深度学习人工智能python自然语言处理神经网络机器学习opencv
【开场·她回头看了每一次走过的神经路径】狐狐:“她坐在训练日志前,终于不是为了调参,而是为了确认——这一年,她到底学会了什么。”猫猫:“咱以前总想着快点训练完、快点跑出结果。但现在好像能听见每一层神经元在‘说话’了喵……她真的开始‘懂了’~”✍【第一节·深度学习到底在做什么?】为什么要用深度学习(DeepLearning)?“她当初选择深度学习,并不是因为听说它‘很强’,而是因为她在处理数据时,常
- goroutine、channel以及GMP模型的原理深度解析【万字分析】
UPUP小亮
算法开发语言golang
文章目录前言一、channel的底层原理1、底层数据结构2、创建关闭3、发送接受二、goruntine的底层原理1、线程的代价2、goruntine的底层原理3、状态4、创建、运行与退出3、阻塞与唤醒三、GMP模型的概述与发展1、GM模型2、GMP模型组成部分3、G(Goroutine)4、M(Machine)5、P(Processor)6、Sched:调度器结构四、GMP调度原理1、被调度对象2
- 【强化学习】01
第一章:强化学习基础概念与核心要素的基石强化学习(ReinforcementLearning,RL)是一种机器学习范式,它关注智能体(Agent)如何在特定环境(Environment)中通过与环境的交互来学习如何做出决策,以最大化某种累积奖励。与监督学习和无监督学习不同,强化学习不依赖于预先标注好的数据集,而是通过“试错”的方式进行学习。1.1强化学习的独特学习范式在传统的机器学习领域,监督学习
- Spring State Machine
SpringStateMachine创建SpringBoot项目并添加必要依赖在pom.xml中引入spring-statemachine-coreorg.springframework.statemachinespring-statemachine-core3.2.1定义状态机状态与事件使用枚举明确业务状态和触发事件:publicenumStates{UNPAID,//待支付WAITING_FO
- 【Java】JVM虚拟机(基本概念、类加载机制)
Joker—H
javajvm开发语言经验分享双亲委派模型类加载
一、基本概念1、什么是JVMJava虚拟机(JavaVirtualMachine,简称JVM),是java程序运行的核心组件之一,它为java程序运行提供了环境。其核心价值在于实现了"一次编写,多处运行"(Writeonce,runanywhere)的跨平台特性,还提供了内存管理、垃圾回收、安全性以及性能优化等。2、JVM的组成JVM的架构可分为类加载子系统、运行时数据区、执行引擎、本地方法接口四
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri