- RAGFlow 框架调研报告
it_czz
架构
RAGFlow框架调研报告1.概述RAGFlow是一个开源的检索增强生成(RAG)框架,专注于深度文档理解和高精度检索。它通过先进的文档解析能力和可视化调试功能,为企业提供了一个强大的知识库问答解决方案。1.1核心特性深度文档处理:内置DeepDoc引擎,支持复杂文档解析高精度检索:提供可视化分块和引用追踪多模态支持:支持文本、图片、PDF、Excel等多种格式开源自托管:完全开源,支持私有化部署
- Python的LibreOffice命令行详解:自动化文档处理的终极指南
在数字化转型的浪潮中,文档处理自动化已成为提升效率的关键。LibreOffice作为开源办公软件的佼佼者,其命令行功能结合Python脚本,可实现从格式转换到复杂文档操作的全面自动化。本文将深入解析如何通过Python调用LibreOffice命令行工具,覆盖从基础操作到高级场景的完整流程。一、环境搭建:三步构建自动化基石1.安装LibreOffice与PythonLinux系统:sudoapti
- 如何高效训练通义万相2.1的LoRA:从原理到实战指南
Liudef06小白
AI作画图生视频lora通义万相WAN2.1
在AI图像生成领域,通义万相2.1作为领先的扩散模型,其官方API虽功能强大,但定制能力有限。LoRA(Low-RankAdaptation)技术正是解决这一痛点的关键钥匙——它允许开发者以极低成本实现模型个性化定制。本文将详细解析训练通义万相2.1LoRA的全流程,助你掌握定制专属AI艺术家的核心技能。一、认识通义万相2.1与LoRA1.1通义万相2.1核心特性多模态理解:精准解析复杂文本提示(
- RAGFlow是一个基于深度文档理解的开源RAG引擎
lyh1344
深度优先
RAGFlow概述RAGFlow是一款基于深度文档理解的开源RAG(检索增强生成)引擎,专注于处理复杂文档结构并提供精准的语义检索与生成能力。其核心优势在于结合多模态文档解析和智能分段技术,优化传统RAG流程中的信息提取与答案生成效果。核心特性深度文档理解支持PDF、PPT、Word、Excel等格式的解析,通过OCR、表格识别、布局分析等技术提取文本、图表及结构化数据,解决传统RAG中非文本内容
- 从实验室到产业:IndexTTS 在六大核心场景的落地实践
gogoMark
人工智能
一、内容创作:重构数字内容生产范式在短视频创作领域,IndexTTS的语音克隆技术彻底改变了配音流程。B站UP主通过5秒参考音频即可克隆出郭老师音色,生成的“各位吴彦祖们大家好”语音相似度达97%,单条视频播放量突破百万。其核心优势在于支持多语言混合输入,中英文混杂文本(如“大家好,我现在正在bilibili体验AI科技”)的自然度评分达0.796,接近人类基准0.85。通过批次推理模式,用户可将
- SQL字符串截取函数全解析:LEFT、RIGHT、SUBSTRING 实战指南
阿蒙Armon
SQLServersql算法数据库sqlserver
SQL字符串截取函数全解析:LEFT、RIGHT、SUBSTRING实战指南一、引言:字符串处理在SQL中的核心地位在数据清洗、报表开发、ETL流程中,字符串处理是SQL编程的高频操作。无论是从复杂文本中提取关键信息,还是对数据进行格式化处理,掌握字符串截取函数都是必备技能。本文将系统解析SQL中最常用的三个字符串截取函数:LEFT、RIGHT和SUBSTRING,通过语法解析、参数说明和实战示例
- LayoutLM模型使用记录
Mark_Aussie
nlp人工智能
在文档处理和信息提取领域,如何让机器精准地理解和处理复杂文档是一个挑战。文档不仅包含文本信息,还包括布局、图像等非文本元素,这些元素在传递信息时起着至关重要的作用,而传统的NLP模型通常忽略了这些视觉元素。LayOutLM是一种创新的深度学习模型,结合了传统的文本处理能力和对文档布局的理解,从而在处理包含丰富布局信息的文档时表现出色。例如,在处理一份报告时,用户不仅关注报告中的文字内容,还会关注图
- 本地部署dify+ragflow+deepseek ,结合小模型实现故障预测,并结合本地知识库和大模型给出维修建议
算法小菜鸟成长心得
语言模型
1.准备工作使用ollama拉取deepseek-r1:7b官网下载ollamaollamarundeepseek-r1:7bollamalistRagflow专注于构建基于检索增强生成(RAG)的工作流,强调模块化和轻量化,适合处理复杂文档格式和需要高精度检索的场景。Dify则旨在降低大型语言模型(LLM)应用开发的门槛,提供低代码甚至无代码的开发体验,适合快速构建和部署多种AI应用。因此文档处
- 【课堂笔记】生成对抗网络 Generative Adversarial Network(GAN)
zyq~
机器学习笔记生成对抗网络人工智能机器学习概率论GAN
文章目录问题背景原理更新过程判别器生成器问题背景 一方面,许多机器学习任务需要大量标注数据,但真实数据可能稀缺或昂贵(如医学影像、稀有事件数据)。如何在少量数据中达到一个很好的训练效果是一个很重要的问题。 另一方面,传统生成模型(如变分自编码器VAE)生成的样本往往模糊或缺乏多样性,难以捕捉真实数据的复杂分布(如高分辨率图像、复杂文本等)。 生成式对抗网络(GAN)提出了用生成器(Gener
- 高精度文档解析利器:Mistral OCR 全面解析与技术应用
gs80140
AIocrMistral
目录高精度文档解析利器:MistralOCR全面解析与技术应用一、什么是MistralOCR?二、MistralOCR的核心特点✅1.支持复杂文档结构解析✅2.高识别精度✅3.与AI系统深度集成✅4.可扩展性与容错能力三、技术原理简述四、如何在OpenWebUI中启用MistralOCR?✅步骤一:上传文档✅步骤二:选择加载器为"MistralOCR"✅步骤三:进入对话或知识检索五、应用场景与实践
- Hive优化原则及对应优化方法
datacode_wud
Hivehivehadoopbigdata
Hive优化未经允许禁止转载A、执行过程查询B、优化原则1、提前过滤数据列剪裁子查询过滤分区剪裁写明连接条件2、减少Job多表选用相同key连接unionall减少groupby使用使用同一表unionall合理使用UDTF函数3、解决数据倾斜小表放前大表放后使用mapjoin使用map端groupby4、设置合理的mapreduce的task数复杂文件增加map个数小文件合并map前合并mapr
- AI日报 - 2025年05月19日
NingboWill
AI日报人工智能
一、【行业深度】1.腾讯混元图像2.0发布:实时生图毫秒级速度与超写实画质热点聚焦:腾讯发布了混元图像2.0模型,大幅提升了AI图像生成的速度和质量,并新增了实时绘画板功能。新模型结合高效的图像编解码器和全新的扩散架构,实现了毫秒级响应速度,同时增强了图像的真实感与细节丰富度,在GenEval基准测试中表现出色。⚡进展追踪:腾讯混元2.0不仅在生图速度上领先,还提升了复杂文本指令的理解准确率至95
- Python爬虫学习路径与实战指南 05
晨曦543210
学习
一、数据清洗与预处理的魔鬼细节1.非结构化文本处理正则表达式进阶:用命名分组提取复杂文本。importretext="价格:¥199.00折扣价:¥159.00"pattern=r"价格:¥(?P\d+\.\d{2})折扣价:¥(?P\d+\.\d{2})"match=re.search(pattern,text)print(match.groupdict())#{'price':'199.00'
- 【Python爬虫实战】正则:从基础字符匹配到复杂文本处理的全面指南
易辰君
python爬虫python爬虫开发语言
个人主页:https://blog.csdn.net/2401_86688088?type=blog系列专栏:https://blog.csdn.net/2401_86688088/category_12797772.html目录前言一、正则表达式(一)正则表达式的基本作用(二)正则表达式的基本组成(三)常用的正则表达式示例(四)正则表达式的应用场景二、re模块的介绍(一)re模块中的常用函数(二
- Windows系统下MinerU的CUDA加速配置指南
林语微光
论文翻译python从入门到实践windowsmineru接口调用人工智能
Windows系统下MinerU的CUDA加速配置指南快速解锁GPU性能,提升文档解析效率1、简介MinerU是一款高效的文档解析工具,支持通过CUDA加速显著提升处理速度。本指南详细说明如何在Windows系统中配置CUDA环境,并启用MinerU的GPU加速功能,帮助用户充分利用NVIDIA显卡的计算能力,优化复杂文档的解析效率。2、前提条件在开始配置前,请确保满足以下条件:硬件要求:NVID
- 【RAG 篇】【多模态文档理解框架与文档大模型全景解析【开发者实战指南】
大F的智能小课
大模型理论和实战人工智能深度学习算法
引言随着金融票据、医疗报告等场景的数字化需求激增,传统OCR技术已无法满足复杂文档的理解需求。本文将深入解析6多模态文档理解框架和3大文档专用LLM,提供从技术选型到落地评估的全链路指南,所有项目均经2024年6月实测验证。一、多模态文档理解框架(一)Donut(NAVER,2022)技术亮点:端到端无OCR架构,直接解析PDF/图片。支持文档视觉问答(DocVQA)。在CORD数据集F1达95.
- 文件有几十个T,需要做rag,用ragFlow能否快速落地呢?
努力努力再努力呐
PyTorchpython多模态RAG学习pytorchhuggingface多模态OpenCompass
一、RAGFlow的优势1、RAGFlow处理大规模数据性能:(1)、RAGFlow支持分布式索引构建,采用分片技术,能够处理TB级数据。(2)、它结合向量搜索和关键词搜索,提高检索效率。(3)、通过智能文档分块和混合检索机制,优化大规模数据处理。2、实际应用案例:(1)、RAGFlow被用于历史辅导助手、机加工行业设备维保等场景。(2)、这些案例展示了RAGFlow在解析复杂文档和提高检索效率方
- WPS Office安卓版文档编辑功能与兼容性评测【高效编辑】
电脑高手-小林
wpsandroid
一、界面设计与操作体验WPSOffice安卓版采用简洁直观的界面设计,首页默认展示近期文档列表,支持一键新建文档、表格或演示文稿。整体操作逻辑与PC端保持一致,新用户也能快速上手。编辑工具栏设计合理,常用功能如字体设置、段落调整、插入图片等均可直接访问,提升编辑效率。文档编辑过程中支持多指缩放、滑动对齐、长按选中等移动端专属操作,使得在手机上处理复杂文档成为可能。此外,WPS提供了云文档功能,可实
- Python正则表达式有哪些常用匹配字符?
程序员总部
pythonpython正则表达式mysql
处理文本数据时,我们经常需要查找、提取或替换特定模式的字符串。这时候正则表达式就成了程序员最强大的武器之一。今天我们就来详细聊聊Python中那些最常用的正则表达式字符和它们的实际用法。为什么要学正则表达式?假设你遇到这些场景:从日志中提取所有日期时间验证用户输入的邮箱格式是否正确批量修改代码中的变量名抓取网页中的特定数据用普通字符串方法处理这些需求会很麻烦!正则表达式能让你用简洁的模式描述复杂文
- 图像处理有哪些核心技术?技术发展现状如何?
合合信息解决方案
图像处理
在数字化信息爆炸的时代,文档图像预处理技术正悄然改变着我们处理文字信息的方式。无论是手持拍摄的收据、扫描仪中的身份证,还是工业机器人采集的复杂文档,预处理技术都在背后默默提升着OCR(光学字符识别)系统的性能。在合合信息发布的《2025智能文档技术与应用白皮书》一书中,视角也集中在了文档图像预处理技术上!在白皮书介绍中,作为OCR流程中的关键一步,在文档图像预处理领域,核心技术进一步细化为切边处理
- 两层检索策略:摘要检索 + 内容检索在 RAG 中的实践
佑瞻
RAGRAGpythonllamaindex分层检索
在企业级RAG系统开发中,面对成百上千的复杂文档,我们常常会陷入这样的困境:直接检索原始内容容易被海量细节淹没,只依赖摘要又担心丢失关键信息。有没有一种方案能兼顾「全局视角」和「细节把控」?今天我们分享一种「摘要检索+内容检索」的两层检索策略,通过LlamaIndex框架实现摘要与原始内容的分层管理与递归检索,帮我们在复杂知识环境中找到精准答案。一、分层检索的核心思想:先定位「知识地图」,再深挖「
- 开源的7B参数OCR视觉大模型:RolmOCR
Panesle
前沿ocr人工智能大模型开源
1.背景介绍早些时候,AllenInstituteforAI发布了olmOCR,这是一个基于Qwen2-VL-7B视觉语言模型(VLM)的开源工具,用于处理PDF和其他复杂文档的OCR(光学字符识别)。开发团队对该工具的高质量和开源特性感到兴奋,并探索了如何利用更新的基础模型和一些轻量级优化来进一步改进它。2.RolmOCR的发布开发团队开发了RolmOCR,作为olmOCR的替代方案。它具有以下
- 小体积大智慧!IBM开源的文档解析神器SmolDocling如何让复杂文档处理变得简单高效?
遇见小码
AI棱镜实验室开源人工智能运维AIGC
每天面对扫描文件、手写笔记、代码截图等复杂文档,你是否还在手动整理排版?今天介绍的这款由IBM与HuggingFace联合推出的开源模型SmolDocling,或许能成为你的效率救星。它仅需256MB内存,就能将图片中的文字、代码、公式、图表等元素一键转为结构化文档,彻底解放你的双手!一、SmolDocling是什么?SmolDocling是基于视觉语言模型(VLM)技术开发的文档处理工具,属于轻
- 日常偷懒(一)正则表达式小记
不知道叫什么呀
用AI满足我的好奇心正则表达式学习AIGC我的AI老师python
平时工作中有很多dritywork,学会偷懒之后真的可以帮我们省很多时间来摸鱼!而正则表达式是我们的偷懒必备装备,会用以后用起来会特别爽~。正则表达式(RegularExpression,简称Regex)是一种用于匹配和操作文本模式的字符串工具,通过特殊语法规则可以快速搜索、替换或提取复杂文本中的特定内容。以下通过概念拆解与实例说明其核心用法:一、基础概念1.核心功能模式匹配:验证字符串是否符合特
- LangChain教程 - RAG - PDF解析
花千树-010
LangChainlangchainpdfpythonAIGC
系列文章索引LangChain教程-系列文章在现代人工智能和自然语言处理(NLP)应用中,处理PDF文档是一项常见且重要的任务。由于PDF格式的复杂性,包含文本、图像、表格等多种内容结构,高效、准确地解析PDF需要强大的工具支持。LangChain提供了一套完善的PDF加载器(PDFLoader),支持从纯文本提取到复杂文档解析,并集成了OCR(光学字符识别)功能,能够处理扫描版PDF或包含嵌入图
- Java动态生成Word终极指南:poi-tl与Aspose.Words性能对比及选型建议
天机️灵韵
开源项目编程语言vscodeJavaword模板
在Java中实现复杂文档生成(如合同、报表)时,poi-tl、Aspose.Words和docx4j是三个主流的模板技术方案。以下是它们的核心对比和选型建议:1.poi-tl(基于ApachePOI的模板引擎)定位:轻量级开源库,基于ApachePOI封装,简化模板操作。核心优势:模板语法灵活:通过{{@var}}、{{?section}}等标签实现文本、表格、列表、图片的动态插入。代码简洁:相比
- 解析稳定率达99.99%!合合信息“大模型加速器2.0”助力AI打破“幻觉”
算法大数据人工智能图表表格
随着大模型在社会应用中逐渐普及,人们在享受便利的同时,也面临着“AI幻觉”产生的风险。训练数据是影响大模型“认知能力”的关键要素,近期,上海合合信息科技股份有限公司(简称“合合信息”)TextIn“大模型加速器2.0”版本正式上线,基于领先的智能文档处理技术,对复杂文档的版式、布局和元素进行精准解析及结构化处理,从数据源头降低大模型“幻觉”风险,让大模型在与人类的沟通中“更靠谱”。“大模型加速器2
- 如何快速提取PDF中的图片?这款免费工具让你事半功倍!
10211234567890
pdf编辑pdfpdf提取图片pdf数据提取pdf提取
在日常学习和工作中,PDF文件几乎成了我们处理文档的标配。但你是否遇到过这样的烦恼:想从PDF里提取图片,却只能手动截图,效率低还容易模糊?尤其是面对几十页的复杂文档,简直让人抓狂……别急!今天分享一个亲测高效的解决方案——完全免费、无需注册、一键提取PDF图片的工具,3分钟搞定难题!为什么你需要专业的PDF图片提取工具?手动截图太麻烦:图片位置分散、尺寸不一,截图后还需裁剪整理,耗时耗力。图片质
- 主流开源大模型能力对比矩阵
时光旅人01号
人工智能开源python深度学习pytorch
模型名称核心优势主要局限Llama2/3✅多语言生态完善✅Rotary位置编码✅GQA推理加速⚠️数据时效性差⚠️隐私保护不足Qwen✅千亿参数规模✅中文语境优化✅复杂文本生成⚠️需高性能硬件⚠️领域知识需二次训练ChatGLM-3✅多轮对话支持✅中英双语流畅✅对话记忆优秀⚠️计算资源消耗大⚠️长文本易发散DeepSeek✅代码注释生成✅技术文档规范✅全流程方案生成⚠️逻辑错误较多⚠️数据更新延迟
- 正则表达式捕获组详解:从入门到掌握
漠月瑾-西安
前端小问题点记录正则表达式javascript前端
正则表达式捕获组详解:从入门到掌握1.什么是捕获组(CaptureGroup)?捕获组是正则表达式中用于==捕获子匹配内容==的语法,通过()包裹的部分会被单独记录。它是处理复杂文本匹配时最常用的功能之一。关键特性提取子内容:从完整匹配中分离出特定部分索引编号:从左到右按(出现的顺序分配编号(从1开始)复用匹配:可在同个正则表达式中反向引用2.基础语法与示例2.1简单捕获组cons
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1