- Spark SQL架构及高级用法
Aurora_NeAr
sparksql架构
SparkSQL架构概述架构核心组件API层(用户接口)输入方式:SQL查询;DataFrame/DatasetAPI。统一性:所有接口最终转换为逻辑计划树(LogicalPlan),进入优化流程。编译器层(Catalyst优化器)核心引擎:基于规则的优化器(Rule-BasedOptimizer,RBO)与成本优化器(Cost-BasedOptimizer,CBO)。处理流程:阶段输入输出关键动
- 【免费下载】 探索PlantVillage-Dataset:深度学习在植物病害检测中的革命性突破
探索PlantVillage-Dataset:深度学习在植物病害检测中的革命性突破在这个数字化时代,人工智能正逐步改变我们的生活,其中深度学习在农业领域的应用尤其引人注目。PlantVillage-Dataset是一个开放源代码的项目,它提供了一个庞大的植物病害识别数据集,旨在帮助开发人员和研究者利用机器学习技术改善农作物健康状况的监测。本文将深入探讨该项目的技术细节、应用价值及其独特之处。项目简
- 使用vscode调试带-m参数的python代码
zaf赵
vscodepythonide
1.问题我在命令行运行的是pythonrender.py-mLangSplat/preprocessed_dataset/sofa/sofa--include_feature-lluage_features_1080p_dim3,但是在vscode中的普通调试,会报模块找不到的问题(原因是普通调试不会带-m参数,所以有些路径就会找不到)。因此,本文记录如何用vscode调试在命令行输入的如上Pyt
- 代谢组数据分析(二十四):基于tidymass包从质谱原始数据到代谢物注释结果的实践指南
生信学习者1
代谢组数据分析(2025版)数据分析数据挖掘r语言数据可视化
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍加载R包数据准备原始数据处理导入massDataset数据对象交互图数据探索更新样本表格信息峰分布情况缺失值情况数据清洗数据质量评估去除噪声代谢特征过滤立群样本填补缺失值数据标准化和整合预处理后评估代谢物注释增加MS2图谱到数据对象数据库1注释数据库2注释数据库3注释结果统计分析剔除无注释代谢物追踪数据对象的相
- Pytorch实现目标检测
importosimportrandomimportpandasaspdimportnumpyasnpimportcv2fromsklearn.model_selectionimporttrain_test_splitimporttorchfromtorch.utils.dataimportDataset,DataLoaderimporttorch.nnasnnimporttorch.nn.fun
- MySQL 8.0 OCP 1Z0-908 题目解析(4)
一只fish
MYSQLOCPmysql数据库
题目013Choosefour.Anewlydeployedreplicationmasterdatabasehasa10/90readtowriteratio.Thecompletedatasetiscurrently28Gbutwillneverfluctuatebeyond±10%.ThedatabasestoragesystemconsistsoftwolocallyattachedPCI
- 《机器学习实战》笔记(03):决策树
巨輪
机器学习机器学习决策树
决策树kNN算法可以完成很多分类任务,但是它最大的缺点就是给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解决策树的构造优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。缺点:可能会产生过度匹配问题。适用数据类型:数值型和标称型。创建分支的伪代码函数createBranch()Checkifeveryiteminthedatasetisinthesa
- tf.decode_raw
Wanderer001
TensorFlowtensorflow人工智能python
参考tf.decode_raw-云+社区-腾讯云tf.decode_raw函数的意思是将原来编码为字符串类型的变量重新变回来,这个方法在数据集dataset中很常用,因为制作图片源数据一般写进tfrecord里用to_bytes的形式,也就是字符串。这里将原始数据取出来,必须制定原始数据的格式,原始数据是什么格式这里解析必须是什么格式,要不然会出现形状的不对应问题!例如元数据是tf.float64
- nnUNet数据加载
山河百草
python开发语言
nnUNetDataset参数列表classnnUNetDataset(object):def__init__(self,folder:str,case_identifiers:List[str]=None,num_images_properties_loading_threshold:int=0,folder_with_segs_from_previous_stage:str=None):fol
- 第N8周:使用Word2vec实现文本分类
weixin_42245644
word2vec人工智能自然语言处理
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、数据预处理1.加载数据importtorchimporttorch.nnasnnimporttorchvisionfromtorchvisionimporttransforms,datasetsimportos,PIL,pathlib,warningswarnings.filterwarnings("ignore")#忽略警告信息#w
- ValueError: Expected more than 1 value per channel when training, got input size torch.Size([1, 384]
我是如此相信_
人工智能深度学习
这个错误通常发生在使用PyTorch训练神经网络时,输入数据维度不符合预期,不能batch_size整除。可能是输入的数据有剩余但不足以达到batch_size所导致的查阅资料发现:在torch.utils.data这个包中,DataLoader类下有一参数为:drop_last–settoTruetodropthelastincompletebatch,ifthedatasetsizeisnot
- AI人工智能大模型中——数据集就是一切 The dataset is everything
AI天才研究院
ChatGPT人工智能
文章目录人工智能模型中的“它”是数据集。The“it”inAImodelsisthedataset.2023年机器学习的现状TheStateofMLin2023ResearchCode研究代码LearnedStructures学习结构ComputeMultipliers计算乘数人工智能模型中的“它”是数据集。The“it”inAImodelsisthedataset.I’vebeenatOpenA
- 电商订单配送延迟预测项目:找出延时高风险订单
用机器学习预测电商订单是否延迟送达:来自巴西电商平台的真实案例项目背景在电商行业中,订单是否按时送达直接影响用户满意度与平台口碑。为了提高用户体验与物流效率,很多平台开始尝试利用机器学习手段提前预测哪些订单存在配送延迟的风险,从而提前介入、优化资源配置。本项目选用的是Kaggle上的BrazilianE-CommercePublicDataset数据集,包含10余张表,涵盖订单、客户、卖家、支付、
- python学习——PyTorch框架的学习(1)
北温凉
python学习python学习pytorch
PyTorch框架的学习简要声明基于小土堆课程视频BiliBili课程资源文章目录PyTorch框架的学习简要声明一、概要二、自定义`Dataset`实现数据加载1.`MyDataset`类的定义数据集初始化获取单个数据样本获取数据集长度2.`MyDataset`的实例化与合并三、使用TensorBoard进行可视化1.引入必要的库2.初始化`SummaryWriter`3.图像数据的处理与可视化
- 卷积神经网络实现猫狗分类
新手且大师
cnn分类人工智能
一.环境配置以及数据加载importtorchimporttorch.nnasnnimporttorch.optimasoptimimporttorchvision.transformsastransformsfromtorchvision.datasetsimportImageFolderfromtorch.utils.dataimportDataLoaderimportmatplotlib.p
- BSCAN 在糖尿病患者数据聚类分析中的应用
wh_xia_jun
AI+医疗机器学习支持向量机人工智能
完整代码:importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportDBSCANfromsklearn.preprocessingimportStandardScalerfromsklearn.datasetsimportmake_blobs#设置随机种子,确保结果可复现np.random.seed(42)#1.生成模拟
- 「日拱一码」035 机器学习——调参过程可视化
胖达不服输
「日拱一码」机器学习人工智能调参过程可视化神经网络python模型可解释性
目录超参数搜索的3D曲面可视化交互式3D可视化神经网络学习率的3D可视化SVM超参数的3D决策边界可视化超参数优化的3D动画超参数搜索的3D曲面可视化##超参数搜索的3D曲面可视化importnumpyasnpimportmatplotlib.pyplotaspltfrommpl_toolkits.mplot3dimportAxes3Dfromsklearn.datasetsimportmake_
- PyTorch图像分类系列——流程概览
VAMOT
PyTorch图像分类系列pytorch深度学习分类计算机视觉
一、加载数据1.使用torchvision.datasets的方法加载经典数据集在此网址查看支持哪些经典数据集:Datasets—Torchvision0.18documentation(pytorch.org)data_train=torchvision.datasets.CIFAR10(root="CIFAR10",train=True,transform=ToTensor(),target_
- 基于逻辑回归的图像二分类算法实现(Pytorch版)
哎呦哥哥、
图像分类pytorch逻辑回归分类
基于逻辑回归的图像二分类算法实现(Pytorch版)数据集模型代码数据集链接:FastFoodClassificationDataset我们只使用Burger和Pizza这两类。模型代码importtorchimporttorch.nnasnnfromtorchvision.models.utilsimportload_state_dict_from_urlmodel_urls={'resnet5
- Real-World Blur Dataset for Learning and Benchmarking Deblurring Algorithms
钟屿
深度学习
用于学习和评估去模糊算法的真实世界模糊数据集摘要近年来,针对相机抖动和物体运动模糊的单幅图像去模糊提出了许多基于学习的方法。为了将这些方法推广到真实世界的模糊场景,包含大量真实模糊图像及其对应的清晰真实图像(groundtruth)的数据集至关重要。然而,目前尚不存在这样的数据集,因此所有现有方法都依赖于合成数据集,这导致它们无法有效去除真实世界图像的模糊。在本工作中,我们提出了一个用于学习和评估
- YOLO V8+Python训练手写数字识别
yuanpan
YOLOpython开发语言
以下是针对Windows11+Python环境的详细步骤说明,从数据集整理到模型训练,全部适配YOLOv8流程。1.数据集整理(MNIST→YOLO格式)1.1下载MNIST数据集MNIST数据集可通过Python直接下载(无需手动下载):python复制fromtorchvision.datasetsimportMNISTimportos#自动下载MNIST数据集(图片和标签)train_dat
- 遥感云平台-GEE下载Landsat8/9影像数据(python)
内容介绍上期文章介绍如何在网页端导出Landsat8/9数据,本期主要介绍如何在本地GEE-python端导出数据以及出图。环境配置:Vscode+Jupyternotebook+gee+geemap+python3.10#导出所需要的包,注意提前安装ee和geemapimporteeimportosimportnumpyasnpimportgeemapfromgeemap.datasetsimp
- Transformers基础组件—Datasets
小蒋的学习笔记
python人工智能机器学习
目录datasets基本使用加载在线数据集加载数据集合集中的某一项任务按照数据集划分进行加载查看数据集数据集划分数据选取与过滤数据映射保存与加载加载本地数据集直接加载文件作为数据集加载文件夹内全部文件作为数据集通过预先加载的其他格式转换加载数据集通过自定义加载脚本加载数据集DatasetwithDataCollatordatasets基本使用fromdatasetsimport*加载在线数据集da
- 神经网络项目--基于FPGA的AI简易项目(1-9图片数字识别)
霖12
深度学习pytorch神经网络fpga开发人工智能机器学习
1.训练MNIST模型importtorch#导入pytorch核心库importtorch.nnasnn#神经网络模块,如卷积层importtorch.optimasoptim#优化器fromtorchvisionimportdatasets,transforms#数据集与图像预处理工具#定义CNN模型classSimpleCNN(nn.Module):#PyTorch库中所有神经网络的“基础模
- 嵌入式学习-PyTorch(4)-day21
LGGGGGQ
学习
1、torchvision中数据集的使用认识官方的一些数据集Datasets—Torchvision0.22documentation试了一下CIFAR10数据集,知道了如何下载官方数据集和展示他们去tensorboard中importtorchvisionfromtorch.utils.tensorboardimportSummaryWriter#处理数据集dataset_transform=t
- PyTorch数据准备:从基础Dataset到高效DataLoader
慕婉0307
pytorchpytorch人工智能python
一、PyTorch数据加载核心组件在PyTorch中,数据准备主要涉及两个核心类:Dataset和DataLoader。它们共同构成了PyTorch灵活高效的数据管道系统。Dataset类:作为数据集的抽象基类,需要实现三个关键方法:len():返回数据集大小getitem():获取单个数据样本(可选)init():初始化逻辑常见实现方式:继承torch.utils.data.Dataset使用T
- PyTorch数据加载与预处理
飘若随风
PyTorchpytorch人工智能python
数据加载与预处理详解1.数据集类(Dataset和DataLoader)1.1Dataset基类PyTorch中的Dataset是一个抽象类,所有自定义的数据集都应该继承这个类,并实现以下两个方法:__len__():返回数据集的大小__getitem__():根据索引返回一个样本概念解析:Dataset类提供了统一的数据访问接口通过继承Dataset,我们可以轻松地将数据集成到PyTorch的生
- 【深度学习实战】当前三个最佳图像分类模型的代码详解
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习人工智能分类模型机器学习TransformerEfficientNetConvNeXt
下面给出三个在当前图像分类任务中精度表现突出的模型示例,分别基于SwinTransformer、EfficientNet与ConvNeXt。每个模型均包含:训练代码(使用PyTorch)从预训练权重开始微调(也可注释掉预训练选项,从头训练)数据集目录结构:└──dataset_root├──buy#第一类图像└──nobuy#第二类图像随机拆分:80%训练,20%验证每个Epoch输出一次loss
- Polars Python 官方教程启动和配置文档
崔暖荔
PolarsPython官方教程启动和配置文档python-polars-the-definitive-guideScriptsanddatasetsfortheO'ReillybookPythonPolars:TheDefinitiveGuide项目地址:https://gitcode.com/gh_mirrors/py/python-polars-the-definitive-guide1.项
- 如何使用目标检测深度学习框架yolov8训练钢管管道表面缺陷VOC+YOLO格式1159张3类别的检测数据集步骤和流程
FL1623863129
深度学习目标检测深度学习YOLO
【数据集介绍】数据集中有很多增强图片,大约300张为原图剩余为增强图片数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):1159标注数量(xml文件个数):1159标注数量(txt文件个数):1159标注类别数:3所在仓库:firc-dataset标注类别名称(注意yo
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc