- Qt 下拉框QComboBox控件:从入门到实战
一、QComboBox核心功能解析1.核心属性属性说明当前示例场景count列表项总数统计学历下拉框中的选项数量editable是否允许用户编辑学历选择时可输入自定义学历currentText当前选中项的文本获取用户选择的"硕士"文本currentData当前选中项的附加数据获取太原对应的区号"0351"currentIndex当前选中项的索引位置(从0开始)确定"硕士"在列表中的位置2.核心方法
- 理解泊松分布与正态分布的数学之美
背景简介在统计学和数据分析领域,泊松分布和正态分布是两种极其重要的概率分布。它们不仅在理论上具有深刻的意义,而且在各种实际应用中,如自然科学研究、金融风险评估、市场调查分析等领域都扮演着关键角色。本文将深入探讨泊松分布的推导过程和作为二项分布极限的情况,以及正态分布概率密度函数的积分求解方法和其最大值及拐点的位置。泊松分布的推导泊松分布是描述在固定时间间隔或空间区域内发生某事件的次数的概率分布。它
- 数学基础薄弱者的大数据技术学习路径指南
Re_Yang09
学习
CDA数据分析师证书含金量高,适应了未来数字化经济和AI发展趋势,难度不高,行业认可度高,对于找工作很有帮助。一、大数据技术数学需求分层二、低门槛学习路线图阶段1:工具优先(3-6个月)技能学习重点替代方案Excel透视表/条件格式WPS表格SQL多表关联/窗口函数MySQL社区版Tableau仪表板制作PowerBI免费版阶段2:实战突破(6-12个月)阶段3:精准补数(1-2个月)统计学速成清
- 统计学5——概率与概率分布
目录知识结构内容精读1.随机事件与概率2.离散型随机变量3.连续型随机变量名词解释小结知识结构内容精读1.随机事件与概率1.1事件随机事件通俗来讲就是在相同条件下可能发生也可能不发生的事件,也就是事件发生的概率是不确定的。与之对应的还有必然事件与不可能事件,显而易见,必然事件就是一定发生的事件,不可能事件与之相反是一定不会发生的事件。他们的符号表示如下:随机事件必然事件不可能事件1.2概率概率及对
- 15、统计学基础:数据描述、推断与分析
您的账号已被封禁
统计学数据描述推断分析
统计学基础:数据描述、推断与分析1.统计类型概述在数据分析中,我们常常需要了解数据的各种特征,这就涉及到不同类型的统计方法。主要有参数统计和非参数统计,其中非参数统计中的顺序统计量在很多场景下有着独特的优势。1.1顺序统计量顺序统计量用于指定数据值在有序集合中的位置,它只要求数据值是有序的,因此适用于比参数统计更广泛的数据分布。常见的顺序统计量包括中位数、四分位数等。-中位数:是排序后分布中处于中
- 统计学①——概率论基础及业务实战
数据小斑马
统计学统计学基础概率分布随机变量期望和方差转盘
统计学系列目录(文末有超级大礼):统计学②——概率分布(几何,二项,泊松,正态分布)统计学③——总体与样本统计学④——置信区间统计学⑤——假设验证一、统计学是什么?统计学分为两类,一类是描述性统计学,通过对数据的集中趋势和变异趋势的刻画来描述数据的分布情况,集中趋势有平均值,中位数和众数三个指标,变异趋势则有全距,四分位距,百分位距,方差,标准差等指标来衡量另一类是推断统计学,通过对样本的统计来推
- 统计学07:概率论基础
夜雨声烦yyy
统计学概率论
一、基础概念概率p代表事件发生的可能性大小,在0-1范围内ab测试中的p值,就代表一种概率(在零假设成立的前提下,观察当前数据或者比当前数据更加极端的数据的概率,p值越小,意味着在零假设成立的情况下,观察到当前结果的概率越小)二、基本性质非负性:P(A)>=0规范性:整个样本空间发生的概率是1加法公式:两个事件A和B的概率之和是P(A∪B)=P(A)+P(B)−P(A∩B)(非互斥事件)P(A∪B
- 《R 矩阵》
lsx202406
开发语言
《R矩阵》引言在数学与统计学领域,矩阵是一种强大的工具,它广泛应用于各种科学研究和实际应用中。本文将深入探讨R矩阵的概念、特性及其在数据分析中的应用。R矩阵的定义与特性1.定义R矩阵,全称为“实对称矩阵”,是指一个实数域上的n×n矩阵,满足以下条件:矩阵A的元素a_ij和a_ji相等,即A是对称矩阵;矩阵A的元素a_ij和a_ji都是实数。2.特性(1)R矩阵是对称的,即A^T=A;(2)R矩阵的
- 【C++】使用箱线图算法剔除数据样本中的异常值
目录一、箱线图算法介绍二、五数概括计算解释三、四分位距(IQR)与异常值判定四、箱线图在数据处理中的应用1.异常值检测2.数据分布比较3.偏态与离散程度分析4.非参数数据展示五、箱线图的局限性六、代码实现及注释七、如果这篇文章能帮助到你,请点个赞鼓励一下吧ξ(✿>◡❛)~一、箱线图算法介绍箱线图(Boxplot)是一种基于统计学的数据可视化和数据处理工具,箱线图假设数据样本服从正态分布,通过五数概
- 量化金融简介(附电子书资料)
hweiyu00
技术栈杂谈量化金融
概述量化金融(QuantitativeFinance)是一门融合数学、统计学、计算机科学与金融学的交叉学科,核心是通过量化模型和数据分析解决金融领域的问题,例如资产定价、风险管理、投资策略开发等。它的兴起与金融市场的复杂化、数据可获得性提升以及计算机算力发展密切相关。电子书资料:https://pan.quark.cn/s/cb1e6b72fbec一、量化金融的核心目标降低不确定性:通过数学模型分
- 遥感技术在地质构造及找矿中应用
BNU_JW
摘要利用Landsat-8卫星的ETM+遥感影像为数据源,结合当地区域地质调查基础资料,对中国西北某高原地区内线性断裂、环形构造、侵入岩体、赋矿地层等地质构造的成矿特征开展遥感解译,综合运用数理统计原理与地统计学分析方法,分析遥感解译的地质构造信息与矿产勘查的相关性,总结了区内解译构造与成矿关系条件。1、区域地质构造概况工作区位于我国西部核心构造部位的青藏高原北缘,北邻塔里木盆地,南接柴达木盆地,
- R语言的分位数回归实践技术高级应用
梦想的初衷~
R语言生态农业r语言回归
回归是科研中最常见的统计学研究方法之一,在研究变量间关系方面有着极其广泛的应用。由于其基本假设的限制,包括线性回归及广义线性回归在内的各种常见的回归方法都有三个重大缺陷:(1)对于异常值非常敏感,极少量的异常值可能导致结果产生巨大的误差;(2)对数据的分布有着较为苛刻的要求,如果数据不符合指定的分布,结果同样是不可信的;(3)只能估计因变量的条件均值,不能估计自变量对因变量分位点的不同影响。分位数
- 数据科学的统计学(一)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/c1775cf5add79c3a9b0f4e83a2b2229d译者:飞龙协议:CCBY-NC-SA4.0前言统计学是数据科学领域任何任务的绝对必要先决条件,但对于进入数据科学领域的开发人员来说,可能也是最令人生畏的障碍。本书将带你踏上从几乎一无所知到能够熟练使用各种统计方法处理典型数据科学任务的统计之旅。本书所需的内容本书适合那些有数据开发背景的
- 概率论基础:公理、定律与贝叶斯定理
偏偏无理取闹
概率论公理贝叶斯定理条件概率随机变量
背景简介概率论是数学的一个分支,主要研究随机事件和随机变量的概率。它是现代统计学、经济学、保险学、金融学、密码学等多个领域不可或缺的理论基础。本文将通过介绍概率论的三大公理,推导出重要的概率法则,并探讨贝叶斯定理及其应用。概率的三大公理概率论的基础在于一套明确的公理系统,这些公理为计算和理解概率提供了数学上的框架。公理1:概率值的范围每个事件A的概率值介于0和1之间,即0≤Pr[A]≤1。这意味着
- R语言基本操作
易易前端
R语言基础实践r语言开发语言
R语言基本操作为什么选择R?丰富的资源涵盖了多种行业数据分析中几乎所有的方法;良好的扩展性十分方便的编写函数和程序包,跨平台,可以胜任复杂的数据分析、绘制精美的图形;完备的帮助系统每个函数都有统一格式的帮助,运行实例;GNU软件免费、软件本身及程序包的源代码公开;R的特点:多领域的统计资源目前在R网站上约有4000个程序包,涵盖了基础统计学、社会学、经济学、生态学、空间分析、系统发育分析、生物信息
- 机器学习之——认识机器学习
-睡到自然醒~
golang重构开发语言
首先,什么是机器学习?参照百度百科的讲解,“机器学习是一门多领域交叉学科,设计概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习能力,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。”什么意思呢?也就是说,机器学习是一门跨领域的学科,是一种能够让机器模仿人类学习能力的一种学科。在Andrew的课程中,提到了几个机器学习的定义:1,A
- 李航老师-统计学习
小三爷_df1b
三个准则1.作为入门选手,不要每章都看2.不要从零造轮子去实现算法,太浪费时间3.必须能手推公式章节目录##统计学习概论-统计学习的目的是对数据进行==预测与分析==-统计学习的前提是同类数据具有一定的统计规律性-统计学习的方法-监督学习(supervisedlearning)-非监督学习(unsupervisedlearning)-半监督学习(semi-supervisedlearning)-强
- 认真对待每一天
Naziya
每天看几个小时的视频节目,再刷几个小时的公众号和微博,不用担心,你会离梦想中的生活越来越远。一天一共24小时,去掉你睡觉的10个小时,一天还有14个小时。如果是上班族、学生党肯定有剩下二分之一的时间是上班或者上课。如果你是无业游民或者不用上班不用学习的咸鱼,呢你有整整14个小时,840分钟,50400秒。按统计学的角度来算,顶级的英语老师和普通的英语老师按每节课算的费用相差大概10倍左右。这样一来
- 学习人工智能开发的详细指南
Ws_
学习人工智能python
一、引言人工智能(AI)开发是一个充满挑战与机遇的领域,它融合了数学、计算机科学、统计学、认知科学等多个学科的知识。随着大数据、云计算和深度学习技术的快速发展,AI已经成为推动社会进步和产业升级的关键力量。本文将为初学者提供一份详细的学习指南,帮助大家逐步掌握AI开发的核心技能。二、基础知识准备数学基础:线性代数:理解向量、矩阵、线性变换等基本概念,掌握矩阵运算和特征值分解等技巧。概率论与统计学:
- Python Pandas 实践学习笔记(1)
PythonPandas教程Pandas是一个开源的、BSD许可证的Python库,为Python编程语言提供高性能、易于使用的数据结构和数据分析工具。Python与Pandas在学术和商业领域都被广泛应用,包括金融、经济、统计学、分析等领域。在本教程中,我们将学习PythonPandas的各种特性以及如何在实践中使用它们。教程对象本教程适用于那些想要学习Pandas基础知识和各种函数的人。对于从
- 深度解析股票量化标准,从数据筛选到模型构建全面解读
股票程序化交易接口
量化交易股票API接口Python股票量化交易股票量化标准数据筛选模型构建量化分析股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>股票量化标准的定义股票量化标准是一套运用数学和统计学方法,对股票投资进行系统性分析与决策的准则。它将各种影响股票价格的因素,如财务数据、市场交易数据等进行量化处理。通过这些量化后的指标,投资者能更精准地评估股票的价值与潜力,减少主观判
- GEV/POT/Markov/点过程/贝叶斯极值全解析;基于R语言的极值统计学
极值统计学就是专门研究自然界和人类社会中很少发生,然而发生之后有着巨大影响的极端现象的统计建模及分析方法;在水文、气象、环境、生态、保险和金融等领域都有着广泛的应用。专题一、独立假设下的极值统计建模主要内容包括:1.广义极值模型.2.极小值的处理.3.广义Pareto模型.4.第r大次序统计量建模.5.R语言中极值统计学包.6.实例操作1-2.(提供案例数据及代码)专题二、平稳时间序列的极值统计建
- 基于R语言的极值统计学及其在相关领域中的实践技术应用
科研的力量
语言类课程极值统计学
受到气候变化、温室效应以及人类活动等因素的影响,自然界中极端高温、极端环境污染、大洪水和大暴雨等现象的发生日益频繁;在人类社会中,股市崩溃、金融危机等极端情况也时有发生;今年的新冠疫情就是非常典型的极端现象。研究此类极端现象需要新的统计学方法,该类统计学的理论和方法都与传统的基于高斯分布的统计学模型有极大的不同。极值统计学就是专门研究自然界和人类社会中很少发生,然而发生之后有着巨大影响的极端现象的
- 数据挖掘:从理论到实践的深度探索
代码老y
数据挖掘人工智能
在当今数字化时代,数据已经成为企业决策的重要依据。数据挖掘作为一门从大量数据中提取有价值信息的技术,已经广泛应用于各个领域,如金融、医疗、零售、互联网等。本文将深入探讨数据挖掘的基本概念、主要技术和实际应用案例,帮助读者更好地理解数据挖掘的价值和应用。一、数据挖掘的基本概念(一)数据挖掘的定义数据挖掘(DataMining)是从大量数据中提取有用信息的过程。它结合了统计学、机器学习、数据库技术和人
- Z-score异常值检测法
吴闹闹(●'◡'●)
人工智能算法
Z-score异常值检测法是一种基于统计学原理的异常值检测技术。它通过计算数据点与数据集平均值的标准化距离来判断该数据点是否为异常值。一、原理Z-score异常值检测法的原理是基于标准正态分布。它通过计算每个数据点与数据集平均值的差距,并将其转换为标准差的倍数,以此来评估数据点的异常程度。在标准正态分布中,大约68%的数据点位于平均值的一个标准差之内,95%的数据点位于两个标准差之内,而99.7%
- 基于流量特征分析的DDoS实时检测与缓解实战
问题场景当Web服务器突发大量SYNFlood攻击时,传统防火墙难以区分真实用户与伪造流量,导致业务中断。解决方案核心:动态流量指纹识别通过统计学习建立正常流量基线,实时拦截异常连接。#DDoS流量检测脚本(Python3+Scapy)fromscapy.allimport*fromcollectionsimportdefaultdictimporttimeTHRESHOLD=1000#每秒SYN
- 【数据分析】R语言基于虚弱指数的心血管疾病风险评估
生信学习者1
数据分析(2025版)数据分析r语言数据挖掘数据可视化
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍加载R包数据下载导入数据数据预处理画图其他1其他2其他3其他4总结系统信息介绍生存分析是医学和生物统计学中常用的方法,用于研究事件(如疾病发生、死亡等)发生的时间和相关影响因素。本文介绍了一种基于R语言的生存分析方法,用于评估虚弱指数(FrailtyIndex,FI)对心血管疾病(CVD)发生风险的影响。通过这
- Python数据可视化:使用Python创建令人惊艳的图表
master_chenchengg
pythonpythonPythonpython开发IT
Python数据可视化:使用Python创建令人惊艳的图表I.可视化的力量:为什么一张好图胜过千言万语II.工欲善其事必先利其器:选择合适的Python可视化库Matplotlib入门:打造你的第一张图表Seaborn的魅力:更美观、更统计学友好的绘图Plotly互动式图表:让你的数据动起来Bokeh与GeoPandas:探索地理空间数据的新维度III.从零开始:一步步教你构建基本图表散点图的艺术
- PyTorch笔记3----------统计学相关函数
HuashuiMu花水木
PyTorch笔记pytorch笔记人工智能
1.基础函数importtorcha=torch.rand(2,2)print("a:\n",a)print('########################')print("平均值:\n",torch.mean(a,dim=0))print("总和:\n",torch.sum(a,dim=0))print("所有元素的积:\n",torch.prod(a,dim=0))print("最大值:\
- 机器学习笔记二-回归
回归是统计学和机器学习中的一种基本方法,用于建模变量之间的关系,特别是用一个或多个自变量(输入变量)来预测一个因变量(输出变量)的值。回归分析广泛应用于预测、趋势分析和关联研究中。根据目标和数据的性质,可以使用不同类型的回归方法。1.回归的基本概念:自变量(IndependentVariable):也称为预测变量、解释变量,是模型中的输入变量,用于预测或解释因变量的变化。因变量(Dependent
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
 
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
 
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
 
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&