- 60、深度学习的发展历程和应用领域【用Python进行AI数据分析进阶教程】
理工男大辉郎
python人工智能数据分析机器学习深度学习
用Python进行AI数据分析进阶教程60:深度学习的发展历程和应用领域关键词:深度学习、神经网络、卷积神经网络、自然语言处理、自动驾驶摘要:本文概述了深度学习的发展历程及其应用领域。从20世纪40年代的神经网络起源,到80年代反向传播算法的提出,再到21世纪初因数据爆炸和计算能力提升而复兴,深度学习经历了多个重要阶段。如今,各种深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)及其变体
- pytorch.反向传播算法和优化器
LyaJpunov
#pytorchpytorch算法深度学习
在训练神经网络时,最常见的算法就是反向传播为了支持反向传播,pytorch有一个内置的分类引擎,叫做TORCH.AUTOGRADimporttorchx=torch.ones(5)#inputtensory=torch.zeros(3)#expectedoutputw=torch.randn(5,3,requires_grad=True)#如果需要反向传播就打开这个参数b=torch.randn(
- 20250108-实验+神经网络(实现见绑定资源)
陈晨辰熟稳重
实验报告神经网络人工智能深度学习
实验3.神经网络与反向传播算法(实现见绑定资源)3.1计算图:复合函数的计算图实验要求1:基于numpy实现(y1,y2)=f(x1,x2,x3)(y_1,y_2)=f(x_1,x_2,x_3)(y1,y2)=f(x1,x2,x3)的反向传播算法(不允许使用自动微分),程序应能够正确计算函数的雅克比矩阵.实验要求2:基于pytorch实现(y1,y2)=f(x1,x2,x3)(y_1,y_2)=f
- 微算法科技技术突破:用于前馈神经网络的量子算法技术助力神经网络变革
MicroTech2025
量子计算算法神经网络
随着量子计算和机器学习的迅猛发展,企业界正逐步迈向融合这两大领域的新时代。在这一背景下,微算法科技(NASDAQ:MLGO)成功研发出一套用于前馈神经网络的量子算法,突破了传统神经网络在训练和评估中的性能瓶颈。这一创新性的量子算法以经典的前馈和反向传播算法为基础,借助量子计算的强大算力,极大提升了网络训练和评估效率,并带来了对过拟合的天然抗性。前馈神经网络是深度学习的核心架构,广泛应用于图像分类、
- educoder机器学习 --- 神经网络
木右加木
educoder机器学习神经网络
第1关:神经网络基本概念1、C第2关:激活函数#encoding=utf8defrelu(x):'''x:负无穷到正无穷的实数'''#*********Begin*********#ifx<=0:return0else:returnx#*********End*********#第3关:反向传播算法#encoding=utf8importosimportpandasaspdfromsklearn.
- 【AI】AI大模型发展史:从理论探索到技术爆发
不想当程序汪的第N天
AI人工智能
一、早期探索阶段—理论与技术奠基1.1符号主义与连接主义的博弈20世纪50-70年代,符号主义AI主导研究方向,通过专家系统模拟人类逻辑推理,但受限于计算能力和数据规模。80年代连接主义AI兴起,以神经网络为核心,反向传播算法的提出为深度学习奠定基础。1.2神经网络初步实践1980年:卷积神经网络(CNN)雏形诞生1998年:LeNet-5模型成功应用于手写数字识别,成为首个商用深度学习模型关键局
- 误差的回响:反向传播算法与神经网络的惊天逆转
田园Coder
人工智能科普人工智能科普
当专家系统在20世纪80年代初期大放异彩,成为人工智能实用化的耀眼明星时,另一股曾经被宣判“死刑”的力量——连接主义(神经网络)——正在寒冬的冻土下悄然涌动,孕育着一场惊天动地的复苏。马文·明斯基和西摩·帕尔特在1969年《感知机》专著中那精准而冷酷的理论批判,如同沉重的封印,将多层神经网络的研究禁锢了近二十年。他们指出的核心死结——缺乏有效算法来训练具有隐藏层的网络——仿佛一道无法逾越的天堑。单
- 深入理解AI人工智能深度学习的原理架构
AI学长带你学AI
人工智能深度学习ai
深入理解AI人工智能深度学习的原理架构关键词:人工智能、深度学习、原理架构、神经网络、数学模型摘要:本文旨在深入剖析AI人工智能深度学习的原理架构。首先介绍了深度学习的背景,包括其目的、预期读者、文档结构和相关术语。接着阐述了深度学习的核心概念,如神经网络、激活函数等,并通过示意图和流程图进行直观展示。详细讲解了核心算法原理,如反向传播算法,并给出Python代码示例。同时,介绍了深度学习中的数学
- 【深度学习-Day 17】神经网络的心脏:反向传播算法全解析
吴师兄大模型
深度学习入门到精通深度学习神经网络算法人工智能pythonpytorchLLM
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 05、反向传播算法(Backpropagation)是如何解决了多层神经网络的参数优化问题的?
季截
数学之美算法神经网络人工智能
反向传播算法(Backpropagation,简称BP算法)是深度学习的核心技术之一,其通过高效计算梯度并结合梯度下降法,解决了多层神经网络参数优化的计算复杂度难题。以下从原理、数学基础、执行步骤及关键价值四个维度,详细解析其工作机制:一、反向传播的核心目标:高效计算参数梯度在多层神经网络中,参数优化的本质是通过调整权重矩阵W和偏置向量b,使损失函数L最小化。而梯度下降法需要计算损失对所有参数的梯
- Pytorch 学习 - 6.pytorch 张量数学-自动求取梯度
chenchihwen
pytorch学习人工智能
先掌握pytorch,学好pytorch,才能学好人工智能autogradtorch.autograd.backwardtorch.autograd.backward是PyTorch中用于自动计算张量(tensor)梯度的函数。在深度学习和神经网络训练中,梯度计算是反向传播算法的核心部分,它允许我们更新模型的权重以最小化损失函数。下面是对torch.autograd.backward函数的详细解释
- 深度学习入门:从零搭建你的第一个神经网络
layneyao
ai深度学习神经网络人工智能
深度学习入门:从零搭建你的第一个神经网络系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu文章目录深度学习入门:从零搭建你的第一个神经网络摘要引言第一章:神经网络基础原理1.1神经元模型1.2反向传播算法1.3激活函数对比第二章:开发环境搭建指南2.1硬件要求2.2软件环境2.2.1Anaconda配置2.2.2PyTorch安装2.2.3TensorFlo
- 【Python深度学习(第二版)(2)】深度学习之前:机器学习简史
roman_日积跬步-终至千里
#python深度学习(第二版)深度学习机器学习人工智能
文章目录一.深度学习的起源1.概率建模--机器学习分类器2.早期神经网络--反向传播算法的转折3.核方法--忽略神经网络4.决策树、随机森林和梯度提升机5.神经网络替代svm与决策树二.深度学习与机器学习有何不同可以这样说,当前工业界所使用的大部分机器学习算法不是深度学习算法。深度学习不一定总是解决问题的正确工具:有时没有足够的数据,深度学习不适用;有时用其他算法可以更好地解决问题。如果第一次接触
- 反向传播算法——矩阵形式递推公式——ReLU传递函数
phoenix@Capricornus
模式识别与机器学习算法矩阵机器学习
总结反向传播算法。来源于https://udlbook.github.io/udlbook/,我不明白初始不从x0\boldsymbol{x}_0x0开始,而是从z0\boldsymbol{z}_0z0开始,不知道怎么想的。考虑一个深度神经网络g[xi,ϕ]g[\boldsymbol{x}_i,\boldsymbol{\phi}]g[xi,ϕ],它接受输入xi\boldsymbol{x}_ixi,
- 深入解析BP神经网络:从理论到实践
语文乌托邦
本文还有配套的精品资源,点击获取简介:BP神经网络是一种通过反向传播算法实现权重更新的人工神经网络模型,广泛应用于多种任务。本文献深入探讨了BP神经网络的结构、前向传播、激活函数、误差函数、反向传播算法、梯度下降、学习率、权重初始化、过拟合与正则化、早停策略、批量与随机梯度下降、学习率衰减、动量法与Adam优化器,以及训练集、验证集与测试集等关键概念。通过这些基础知识,读者将能够理解并应用BP神经
- 纯Java实现反向传播算法:零依赖神经网络实战
一枚码农404
神经网络算法java算法反向传播Java机器学习神经网络算法实现深度学习基础
在深度学习框架泛滥的今天,理解算法底层实现变得愈发重要。反向传播(Backpropagation)作为神经网络训练的基石算法,其实现往往被各种框架封装。本文将突破常规,仅用Java标准库实现完整BP算法,帮助开发者:1)深入理解BP数学原理。2)掌握面向对象的神经网络实现。3)构建可扩展的算法框架。该篇文章彻底摆脱第三方依赖,展现Java的数值计算潜力。一、反向传播算法原理速览反向传播本质是链式法
- 第20节:深度学习基础-反向传播算法详解
点我头像干啥
从零开始学习深度学习图像分类实战(pytorch)深度学习神经网络人工智能机器学习
一、引言反向传播算法(Backpropagation,简称BP算法)是深度学习领域最为核心的算法之一,它为神经网络提供了一种高效计算梯度的方法,使得基于梯度的优化成为可能。自20世纪80年代被重新发现并广泛应用以来,反向传播算法已经成为训练多层神经网络的标准方法,推动了深度学习革命的发展。反向传播算法的本质是链式法则(ChainRule)在神经网络中的巧妙应用,它通过从输出层向输入层反向传播误差信
- 人工智能应用:从技术突破到生态重构的演进之路
feng99520
人工智能IAAAIAAIAAAIF
一、人工智能的发展历程:从符号主义到通用智能探索人工智能(AI)的发展始于20世纪中叶,其历程可划分为四个关键阶段:符号主义与早期探索(1950s-1970s)以逻辑推理和专家系统为核心,例如医疗诊断工具MYCIN。然而,受限于算力和数据,这一阶段陷入第一次“AI寒冬”。连接主义与神经网络崛起(1980s-2000s)反向传播算法(1986年)和卷积神经网络(1998年)的突破,推动计算机视觉和语
- NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
人工智能深度学习神经网络
反向传播算法自四十年前问世以来一直作为深度学习的基石,然而仍然面临两项关键技术挑战:首先由于必须存储中间激活值用于梯度计算,导致内存消耗显著;其次其本质上的顺序计算特性严重限制了模型在分布式多GPU环境下的并行扩展能力。近期牛津大学、Mila研究所与GoogleDeepMind的研究团队联合提出了一种名为NoProp的创新方法。该研究成果表明,图像分类模型的训练可以完全不依赖任何形式的全局前向或反
- 【人工智能数学基础】——反向传播算法详解:从链式法则到神经网络训练实战
Sonal_Lynn
AI专题人工智能算法神经网络深度学习机器学习
目录编辑前言:反向传播——深度学习的"学习引擎"一、反向传播的数学基石1.1链式法则:反向传播的核心1.2计算图视角下的反向传播二、从零实现反向传播2.1Python实现双层神经网络2.2代码解析:三、反向传播的优化策略3.1常见问题及解决方案3.2现代优化器的实现对比四、PyTorch实战反向传播4.1自动微分实现4.2关键优势:五、反向传播的生物学启示5.1与人类神经系统的相似性5.2未来发展
- 深度学习-torch2
De_Yh
深度学习人工智能
八、自动微分自动微分模块torch.autograd负责自动计算张量操作的梯度,具有自动求导功能。自动微分模块是构成神经网络训练的必要模块,可以实现网络权重参数的更新,使得反向传播算法的实现变得简单而高效。1.基础概念张量Torch中一切皆为张量,属性requires_grad决定是否对其进行梯度计算。默认是False,如需计算梯度则设置为True。计算图:torch.autograd通过创建一个
- 使用python和matlab实现BP神经网络算法的分析比较
ChaseDreamRunner
pythonmatlab神经网络
分析和比较使用Python和MATLAB实现BP神经网络算法实现的复杂度、代码可读性、库支持、性能以及应用的灵活性等。1.BP神经网络的基本原理BP神经网络(BackPropagationNeuralNetwork)是一种多层前馈神经网络,通过反向传播算法来训练网络。其基本思想是利用梯度下降法,通过反向传播误差梯度不断调整网络的权值和偏置,使网络的实际输出值与期望输出值之间的误差最小化。2.Pyt
- 人工智能100问☞第3问:深度学习的核心原理是什么?
AI算力那些事儿
人工智能100问人工智能深度学习
目录一、通俗解释二、专业解析三、权威参考深度学习的核心原理是通过构建多层神经网络结构,逐层自动提取并组合数据特征,利用反向传播算法优化参数,从而实现对复杂数据的高层次抽象和精准预测。一、通俗解释深度学习的核心原理,就像是教计算机像婴儿学画画一样,从简单线条到复杂图案一步步升级能力。自动找特征:传统方法需要人工告诉计算机“猫有尖耳朵”,而深度学习直接把千万张图片丢给它,自己琢磨出“耳朵形状”“毛发纹
- 【机器学习】——神经网络与深度学习_机器学习 深度学习 神经网络(1)
2401_84183451
2024年程序员学习机器学习深度学习神经网络
引入一、神经网络及其主要算法1、前馈神经网络2、感知器3、三层前馈网络(多层感知器MLP)4、反向传播算法二、深度学习1、自编码算法AutorEncoder
- 【Matlab】-- 基于MATLAB的飞蛾扑火算法与反向传播算法的混凝土强度预测
电科_银尘
Matlab程序matlab算法开发语言
文章目录文章目录01内容概要02MFO-BP模型03部分代码04运行结果05参考文献06代码下载01内容概要本资料介绍了一种基于飞蛾扑火算法(MothFlameOptimization,MFO)与反向传播算法(Backpropagation,BP)的混凝土强度预测模型。飞蛾扑火算法是一种新兴的元启发式优化算法,它模拟了飞蛾在自然界中向光源飞行的行为,用于寻找最优解。结合反向传播算法,该模型能够优化
- 深入解析Quantum-GABP:量子神经网络的实现与应用
m0_57781768
神经网络量子计算人工智能
深入解析Quantum-GABP:量子神经网络的实现与应用引言在现代科技飞速发展的今天,量子计算与神经网络的结合成为了研究热点。量子神经网络(QuantumNeuralNetworks,QNN)凭借其巨大的计算潜力和独特的量子特性,逐渐吸引了研究者的关注。其中,Quantum-GABP(量子广义反向传播算法)作为一种高效的量子神经网络训练算法,展现出极大的应用前景。本文将深入探讨Quantum-G
- tensorflow keras 报错 :No gradients provided for any variable 原因与解决办法
研志必有功
tensorflow报错tensorflow深度学习机器学习神经网络自然语言处理
错误分析Nogradientsprovidedforanyvariable这个意思是没有梯度给已知的所有函数,为什么会出现这个错误呢,因为在深度学习中,梯度的更新是由于反向传播算法的实现的,如果损失函数没有与已知的任何(除输入)层关联,那么,损失函数就无法求出关于各个函数的梯度,导致错误解决办法例如损失函数defcontrastive_loss_layer(left_inputs,right_in
- 深度学习模型:原理、应用与代码实践
accurater
c++算法笔记人工智能深度学习
引言深度学习作为人工智能的核心技术,已在图像识别、自然语言处理、代码生成等领域取得突破性进展。其核心在于通过多层神经网络自动提取数据特征,解决复杂任务。本文将从基础理论、模型架构、优化策略、应用场景及挑战等多个维度展开,结合代码示例,系统解析深度学习模型的技术脉络与实践方法。一、深度学习基础理论神经网络基本原理神经网络由输入层、隐藏层和输出层构成,通过反向传播算法调整权重。以全连接网络为例,前向传
- 基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用
xiao5kou4chang6kai4
深度学习遥感勘测python深度学习分类
专题一:深度学习发展与机器学习深度学习的历史发展过程机器学习,深度学习等任务的基本处理流程梯度下降算法讲解不同初始化,学习率对梯度下降算法的实例分析从机器学习到深度学习算法专题二深度卷积网络、卷积神经网络、卷积运算的基本原理池化操作,全连接层,以及分类器的作用BP反向传播算法的理解一个简单CNN模型代码理解特征图,卷积核可视化分析专题三TensorFlow与keras介绍与入门TensorFlow
- AI真的能理解我们这个现实物理世界吗?深度剖析原理、实证及未来走向
AI_DL_CODE
人工智能深度学习AIAI理解世界
摘要:当下,AI与深度学习广泛渗透生活各领域,大模型与海量数据加持下,其是否理解现实物理世界引发热议。文章开篇抛出疑问,随后深入介绍AI深度学习基础,包含神经网络架构、反向传播算法。继而列举AI在物理场景识别、实验数据分析中显露的“理解”迹象,也点明常识性错误、极端场景失效这类反例。从信息论、物理启发式算法剖析理论支撑,探讨融合物理知识路径,并延展至跨学科应用、评估维度、伦理社会问题,最终展望AI
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "
[email protected]"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(