- Deepseek技术深化:驱动大数据时代颠覆性变革的未来引擎
荣华富贵8
springboot搜索引擎后端缓存redis
在大数据时代,信息爆炸和数据驱动的决策逐渐重塑各行各业。作为一项前沿技术,Deepseek正在引领新一轮技术革新,颠覆传统数据处理与分析方式。本文将从理论原理、应用场景和前沿代码实践三个层面,深入剖析Deepseek技术如何为大数据时代提供颠覆性变革的解决方案。一、技术背景与核心思想1.1大数据挑战与机遇在数据量呈指数级增长的背景下,传统数据处理方法面临数据存储、计算效率和信息提取精度的诸多挑战。
- 学C++的五大惊人好处
为什么要学c++学c++有什么用学习c++的好处有1.中考可以加分2.高考可能直接录取3.就业广且工资高4.在未来30--50年c++一定是一个很受欢迎的职业5.c++成功的例子deepsick等AI智能C++语言兼备编程效率和编译运行效率的语言C++语言是C语言功能增强版,在c语言的基础上添加了面向对象编程和泛型编程的支持既继承了C语言高效,简洁,快速和可移植的传统,又具备类似Java、Go等其
- 基于DeepSeek的下一代大型游戏开发革命:架构、核心技术与项目管理实践
Liudef06小白
特殊专栏人工智能AIGC架构人工智能deepseek
基于DeepSeek的下一代大型游戏开发革命:架构、核心技术与项目管理实践DeepSeek大模型正重塑游戏开发范式,本文将深入解析如何利用这一革命性技术构建下一代大型游戏,涵盖从架构设计到项目管理的全流程实践。目录DeepSeek游戏引擎核心架构1.1神经符号系统融合架构1.2动态世界生成引擎智能NPC与剧情系统2.1角色人格建模技术2.2动态叙事生成算法大型项目管理体系3.1敏捷-AI混合开发流
- 19.0-《超越感觉》-说服他人
SAM52
Becausethoughtfuljudgmentsdeservetobeshared,andthewaytheyarepresentedcanstronglyinfluencethewayothersreacttothem.因为经过深思熟虑的判断值得分享,而这些判断的呈现方式会强烈影响其他人对它们的反应。Bylearningtheprinciplesofpersuasionandapplying
- 2018年中南大学中英翻译
某翁
参考:20180827235856533.jpg【1】机器学习理论表明,机器学习算法能从有限个训练集样本上得到较好的泛化【1】Machinelearningtheoryshowsthatmachinelearningalgorithmcangeneralizewellfromfinitetrainingsetsampleslimited有限的infinite无限的【2】这似乎违背了一些基本的逻辑准
- 深入理解卷积神经网络(CNN)与循环神经网络(RNN)
CodeJourney.
cnnrnn人工智能
在当今的人工智能领域,神经网络无疑是最为璀璨的明珠之一。而卷积神经网络(ConvolutionalNeuralNetworks,CNN)和循环神经网络(RecurrentNeuralNetworks,RNN)作为神经网络家族中的重要成员,各自有着独特的架构和强大的功能,广泛应用于众多领域。本文将深入探讨这两种神经网络的原理、特点以及应用场景,为对深度学习感兴趣的读者提供全面的知识讲解。一、卷积神经
- 时序预测 | MATLAB实现贝叶斯优化CNN-GRU时间序列预测(股票价格预测)
Matlab机器学习之心
matlabcnngru
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍股票价格预测一直是金融领域一个极具挑战性的课题。其内在的非线性、随机性和复杂性使得传统的预测方法难以取得令人满意的效果。近年来,深度学习技术,特别是卷积神经网络(CNN)和门控循环单元(GRU)的结合,为时
- 时序预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测
Matlab算法改进和仿真定制工程师
matlabcnngru
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍时间序列预测在各个领域都具有重要的应用价值,例如金融市场预测、气象预报、交通流量预测等。准确地预测未来趋势对于决策制定至关重要。近年来,深度学习技术在时间序列预测领域取得了显著进展,其中卷积神经网络(CNN)和门控循环单元(GRU)由于其强
- DeepBI助力亚马逊广告投放:精准获取竞品ASIN,抢占更多流量
新置元
创业创新amazon亚马逊广告
想在亚马逊广告投放中抢占更多流量?关键就在于精准添加竞品ASIN!通过DeepBI,你可以轻松找到与你产品高度相关的竞品,自动添加到广告中,提升曝光率。系统不仅智能分析竞品,还根据最新的数据调整出价策略,让你以最低成本获取最大回报。想要在竞争激烈的市场中脱颖而出,提升广告效果,DeepBI帮你精准定位、优化投放,让每一笔广告投入都物超所值!一、精准获取与添加竞品ASIN的重要性在亚马逊广告投放中,
- Python STL概念学习与代码实践
体制教科书
本文还有配套的精品资源,点击获取简介:通过”py_stl_learning”项目,学习者可以使用Python实现和理解C++STL的概念,包括数据结构、算法、容器适配器、模板和泛型容器等。Python中的列表、集合、字典等数据结构与STL中的vector、set、map等类似,而Python的itertools和functools模块提供了STL风格的算法功能。Python通过其面向对象的特性以及
- Day 2-DeepMind and London hospital focus AI on spotting eye diseases from scans
罗禹
篇章分析段落大意总起1.What-讲述DeepMindAI在健康领域的运用,及地位。分论现状及已有成果2.How-DeepMind如何运转,与过往方式人工诊断比较的优势。3.What-现阶段成果及未来发展:临床实践运用转化为学术成果,文章发表。未来将进一步进行临床实验。引用+前景4.通过引用DeepMindHealth负责人的话,来阐明未来前景。实操阐述5.What-算法机械学习的具体材料,及临床
- 基于深度学习的目标检测算法综述:从RCNN到YOLOv13,一文看懂十年演进!
人工智能教程
深度学习目标检测算法人工智能自动驾驶YOLO机器学习
一、引言:目标检测的十年巨变2012年AlexNet拉开深度学习序幕,2014年RCNN横空出世,目标检测从此进入“深度时代”。十年间,算法从两阶段到单阶段,从Anchor-base到Anchor-free,从CNN到Transformer,从2D到3D,从监督学习到自监督学习,迭代速度之快令人目不暇接。本文将系统梳理基于深度学习的目标检测算法,带你全面了解技术演进、核心思想、代表算法、工业落地与
- 智慧建筑:科技引领房地产与建筑业的未来
RedPhoenix45
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE智慧建筑:科技引领房地产与建筑业的未来随着科技的飞速发展,人工智能(AI)和智能化工具正以前所未有的速度改变着各行各业。在房地产与建筑领域,这种变革尤为显著。从建筑设计到施工管理,再到物业管理,智能化技术正在重塑行业的每一个环节。本文将探讨如何利用先进的智能化工具提升房地产与建筑行业的效率,并介绍一款革命性的开发工具——它
- 智慧施工:AI技术赋能建筑安全监测新纪元
开发AI智能应用,就下载InsCodeAIIDE,一键接入DeepSeek-R1满血版大模型!智慧施工:AI技术赋能建筑安全监测新纪元在现代建筑行业中,施工安全始终是核心关注点之一。随着科技的飞速发展,人工智能(AI)和大数据分析逐渐成为提升施工安全的重要工具。本文将探讨如何利用智能化软件和大模型API来构建高效的施工安全监测系统,并介绍一款强大的开发工具——InsCodeAIIDE的应用场景及其
- 基于RSS与KNN的室内定位技术实现
火箭统
本文还有配套的精品资源,点击获取简介:室内定位技术对于智能建筑和物联网至关重要,在没有GPS信号的环境中尤其重要。RSS位置指纹法利用特定位置的无线信号强度来确定设备位置,而KNN算法能够基于信号强度找到最近的已知位置进行预测。本教程详细讲解了如何在MATLAB中通过”positioning_simulation.m”代码实现RSS位置指纹法与KNN算法的结合,涵盖数据预处理、算法实现、位置预测、
- 每周一段仿写-181028
Zeroun_Ph
Theneedfornewlearningstylesdoesnotmeanignoringthewaysinthepast.TheInternetagebringssomechallengesnotseenbefore,mostobviouslyandmostworryinglyuselessinformationblast.Butfragmentationoflearningandtheine
- 用matlab对微分方程组进行仿真,基于MATLAB的微分方程组的数值计算
稗官无印
238科技资讯科技资讯SCIENCE&TECHNOLOGYINFORMATION2009NO.06SCIENCE&TECHNOLOGYINFORMATION学术论坛传统的解微分方程组的方法有近似分析解法﹑表解法和图解法。这些方法有一定的局限性。MATLAB是一种基于矩阵的数学软件包,该软件包包括了一个数值程序扩展库,并且有高级编程格式。应用MATLAB工具箱中自带的四阶五级的龙格库塔法(ode45
- 八大国产 AI 模型全景对比:阿里 Qwen、百度文心、腾讯混元、字节豆包、华为盘古、DeepSeek、Kimi、MiniMax 的技术解析与选型指南
charles666666
人工智能百度交互语言模型transformer产品经理
“在国产AI模型百花齐放的今天,企业技术决策者稍有不慎,就可能陷入性能与成本的双重困境。如何穿越技术迷雾,找到真正适配业务场景的那把钥匙?”一、开篇引言当技术选型决定企业AI落地成败,你还在凭感觉决策吗?当前国产AI模型市场,模型同质化现象严重,各厂商宣传资料中充满夸张的性能指标,但真正落地到企业实际业务场景中,却常常出现适配性不佳、部署成本不可控等问题。企业急需一份基于真实数据与场景验证的深度解
- 考研长难句-1-29
EasyNetCN
Onfirstlearning,thiswasthesociallyconcernedchancellortryingtochangelivesforthebetter,completewith"reforms"toanobviouslyindulgentsystemthatdemandstoolittleeffortfromthenewlyunemployedtofindwork,andsubs
- MATLAB:取整、取余函数
彤小白
取整函数:向正方向取整:ceil向负方向取整:floor向0方向取整:fix四舍五入取整:round取余函数:rem(x,y)=x-y.*fix(x./y)mod(x,y)=x-y.*fix(x./y)当x,y同号时,rem(x,y)与mod(x,y)相同当x,y异号时,rem(x,y)值的符号与x一致,mod(x,y)值的符号与y一致>>x=5;y=3;>>rem(x,y)ans=2>>mod(
- 《目标法则》:如何找到你的明确首要目标?
女朱姝涵
我们每个人都想找到自己最终要确定的目标,但是很多人终其一生都在寻找中,都没有找到自己最需要的目标。在一本书中,结合成功学之父拿破仑•希尔里面的理念,可以助力你找到自己最终的目标。该书就是《目标法则—大师的积极思维课》。作者是米奇•霍洛维茨,作家,企鹅出版社编辑,著有《隐秘美国》《神奇俱乐部》等获奖图书。是很多时报的专栏作家,更是CNN,哥伦比亚广播等有声书讲师,一生在研究拿破仑•希尔的思想。什么是
- Mamba架构的模型 (内容由deepseek辅助汇总)
Jiang_Immortals
人工智能
基于Mamba架构的模型近年来在效率和性能上展现出显著突破,以下按架构类型分类列出当前表现最出色的代表模型及其核心特点:一、纯SSM架构模型FalconMamba-7B关键创新:首个通用大规模纯Mamba模型,由阿布扎比TII开发,基于Mamba-1改进,增加RMS归一化层提升训练稳定性13。性能表现:在综合基准(IFEval、BBH、MMLU-PRO等)平均得分15.04,超越Llama3.1-
- DeepSeek在大数据领域正掀起一场深刻的变革
智海观潮
AI大数据deepseekAI
随着人工智能技术的飞速发展,DeepSeek作为一款行业领先的开源大模型,正在大数据领域掀起一场深刻的变革。其强大的数据处理和分析能力,为各行业带来了新的机遇和变革,推动数据与业务的深度融合。以下是DeepSeek在大数据领域的一些典型的潜在应用:1.加速数据处理与分析流程在传统的大数据应用中,数据收集、预处理和分析往往是一个繁琐且耗时的工程。DeepSeek凭借其高效的算法和强大的计算能力,极大
- 强化学习入门三(SARSA)
第六五签
算法模型算法人工智能
SARSA算法详解SARSA是强化学习中另一种经典的时序差分(TD)学习算法,与Q-Learning同属无模型(model-free)算法,但在更新策略上有显著差异。SARSA的名称来源于其更新公式中涉及的五个元素:状态(State)、动作(Action)、奖励(Reward)、下一状态(NextState)、下一动作(NextAction),即(S,A,R,S’,A’)。SARSA与Q-Lear
- Matlab医学图像配准工具箱使用指南
远方之巅
本文还有配套的精品资源,点击获取简介:医学图像配准是一个关键的IT技术,特别是对于不同条件下的医学图像分析至关重要。’fordanic/image-registration’是一个Matlab工具箱,它提供了易于使用的接口和算法,助力研究人员和工程师高效准确地完成医学图像配准工作。工具箱内包含了多个示例脚本,详细演示了二维和三维空间中的图像配准步骤,包括图像预处理、特征检测、相似性度量、几何变换模
- 2025年最新五大顶级大模型技术对比分析报告
it_czz
人工智能
2025年最新五大顶级大模型技术对比分析报告执行摘要本报告基于2025年最新数据,深度分析当前最顶尖的5个已发布大语言模型:KimiK2(月之暗面)、Claude3.5Sonnet、GPT-4o、Gemini2.5Pro、DeepSeekR1,从技术架构、成本效益、性能表现、适配场景等多个维度进行全面对比。核心发现KimiK2:中文优化最强,超长上下文处理能力突出,本土化程度最高Claude3.5
- RAGFlow 框架调研报告
it_czz
架构
RAGFlow框架调研报告1.概述RAGFlow是一个开源的检索增强生成(RAG)框架,专注于深度文档理解和高精度检索。它通过先进的文档解析能力和可视化调试功能,为企业提供了一个强大的知识库问答解决方案。1.1核心特性深度文档处理:内置DeepDoc引擎,支持复杂文档解析高精度检索:提供可视化分块和引用追踪多模态支持:支持文本、图片、PDF、Excel等多种格式开源自托管:完全开源,支持私有化部署
- 【YOLO系列】YOLOv1详解:模型结构、损失函数、训练方法及代码实现
一碗白开水一
yolo系列助你拿捏AI算法YOLO人工智能目标检测计算机视觉
YOLOv1(YouOnlyLookOnce):实时目标检测的革命性突破✨motivation在目标检测领域,传统方法如R-CNN系列存在计算冗余、推理速度慢的问题。2016年提出的YOLO(YouOnlyLookOnce)首次实现端到端单阶段检测,将检测速度提升至45FPS(FasterR-CNN仅7FPS),彻底改变了实时目标检测的格局。其核心思想是将检测视为回归问题,实现"看一眼即知全貌"的
- 如何评价开课吧机器学习特训营这个课程?
cda2024
机器学习人工智能
开场:点明主题,吸引眼球在当今数据驱动的时代,机器学习(MachineLearning)已经成为各个行业不可或缺的技术之一。无论是金融、医疗、制造还是零售,机器学习的应用都为这些领域带来了巨大的变革。面对这样的趋势,许多人都希望能够掌握这门技术,从而提升自己的职业竞争力。那么,当我们谈论“如何评价开课吧机器学习特训营这个课程”时,实际上是在探讨一个非常具体且重要的问题:对于那些希望进入或深入机器学
- 表征学习:机器认知世界的核心能力与前沿突破
大千AI助手
人工智能#OTHERPython学习人工智能机器学习神经网络表征学习RL特征工程
一、定义与背景:从特征工程到自动化学习表征学习(RepresentationLearning),又称特征学习(FeatureLearning),是机器学习的核心技术领域,其核心目标是通过算法自动学习数据的内在特征表示,将复杂多变的原始数据(如图像、文本、语音)转化为低维、富含语义信息的向量形式,从而提升下游任务(如分类、回归、聚类)的效率和精度。与传统依赖人工设计特征的特征工程(FeatureEn
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$