- RAGFlow 框架调研报告
it_czz
架构
RAGFlow框架调研报告1.概述RAGFlow是一个开源的检索增强生成(RAG)框架,专注于深度文档理解和高精度检索。它通过先进的文档解析能力和可视化调试功能,为企业提供了一个强大的知识库问答解决方案。1.1核心特性深度文档处理:内置DeepDoc引擎,支持复杂文档解析高精度检索:提供可视化分块和引用追踪多模态支持:支持文本、图片、PDF、Excel等多种格式开源自托管:完全开源,支持私有化部署
- Python的LibreOffice命令行详解:自动化文档处理的终极指南
在数字化转型的浪潮中,文档处理自动化已成为提升效率的关键。LibreOffice作为开源办公软件的佼佼者,其命令行功能结合Python脚本,可实现从格式转换到复杂文档操作的全面自动化。本文将深入解析如何通过Python调用LibreOffice命令行工具,覆盖从基础操作到高级场景的完整流程。一、环境搭建:三步构建自动化基石1.安装LibreOffice与PythonLinux系统:sudoapti
- 如何高效训练通义万相2.1的LoRA:从原理到实战指南
Liudef06小白
AI作画图生视频lora通义万相WAN2.1
在AI图像生成领域,通义万相2.1作为领先的扩散模型,其官方API虽功能强大,但定制能力有限。LoRA(Low-RankAdaptation)技术正是解决这一痛点的关键钥匙——它允许开发者以极低成本实现模型个性化定制。本文将详细解析训练通义万相2.1LoRA的全流程,助你掌握定制专属AI艺术家的核心技能。一、认识通义万相2.1与LoRA1.1通义万相2.1核心特性多模态理解:精准解析复杂文本提示(
- RAGFlow是一个基于深度文档理解的开源RAG引擎
lyh1344
深度优先
RAGFlow概述RAGFlow是一款基于深度文档理解的开源RAG(检索增强生成)引擎,专注于处理复杂文档结构并提供精准的语义检索与生成能力。其核心优势在于结合多模态文档解析和智能分段技术,优化传统RAG流程中的信息提取与答案生成效果。核心特性深度文档理解支持PDF、PPT、Word、Excel等格式的解析,通过OCR、表格识别、布局分析等技术提取文本、图表及结构化数据,解决传统RAG中非文本内容
- 从实验室到产业:IndexTTS 在六大核心场景的落地实践
gogoMark
人工智能
一、内容创作:重构数字内容生产范式在短视频创作领域,IndexTTS的语音克隆技术彻底改变了配音流程。B站UP主通过5秒参考音频即可克隆出郭老师音色,生成的“各位吴彦祖们大家好”语音相似度达97%,单条视频播放量突破百万。其核心优势在于支持多语言混合输入,中英文混杂文本(如“大家好,我现在正在bilibili体验AI科技”)的自然度评分达0.796,接近人类基准0.85。通过批次推理模式,用户可将
- SQL字符串截取函数全解析:LEFT、RIGHT、SUBSTRING 实战指南
阿蒙Armon
SQLServersql算法数据库sqlserver
SQL字符串截取函数全解析:LEFT、RIGHT、SUBSTRING实战指南一、引言:字符串处理在SQL中的核心地位在数据清洗、报表开发、ETL流程中,字符串处理是SQL编程的高频操作。无论是从复杂文本中提取关键信息,还是对数据进行格式化处理,掌握字符串截取函数都是必备技能。本文将系统解析SQL中最常用的三个字符串截取函数:LEFT、RIGHT和SUBSTRING,通过语法解析、参数说明和实战示例
- LayoutLM模型使用记录
Mark_Aussie
nlp人工智能
在文档处理和信息提取领域,如何让机器精准地理解和处理复杂文档是一个挑战。文档不仅包含文本信息,还包括布局、图像等非文本元素,这些元素在传递信息时起着至关重要的作用,而传统的NLP模型通常忽略了这些视觉元素。LayOutLM是一种创新的深度学习模型,结合了传统的文本处理能力和对文档布局的理解,从而在处理包含丰富布局信息的文档时表现出色。例如,在处理一份报告时,用户不仅关注报告中的文字内容,还会关注图
- 本地部署dify+ragflow+deepseek ,结合小模型实现故障预测,并结合本地知识库和大模型给出维修建议
算法小菜鸟成长心得
语言模型
1.准备工作使用ollama拉取deepseek-r1:7b官网下载ollamaollamarundeepseek-r1:7bollamalistRagflow专注于构建基于检索增强生成(RAG)的工作流,强调模块化和轻量化,适合处理复杂文档格式和需要高精度检索的场景。Dify则旨在降低大型语言模型(LLM)应用开发的门槛,提供低代码甚至无代码的开发体验,适合快速构建和部署多种AI应用。因此文档处
- 【课堂笔记】生成对抗网络 Generative Adversarial Network(GAN)
zyq~
机器学习笔记生成对抗网络人工智能机器学习概率论GAN
文章目录问题背景原理更新过程判别器生成器问题背景 一方面,许多机器学习任务需要大量标注数据,但真实数据可能稀缺或昂贵(如医学影像、稀有事件数据)。如何在少量数据中达到一个很好的训练效果是一个很重要的问题。 另一方面,传统生成模型(如变分自编码器VAE)生成的样本往往模糊或缺乏多样性,难以捕捉真实数据的复杂分布(如高分辨率图像、复杂文本等)。 生成式对抗网络(GAN)提出了用生成器(Gener
- 高精度文档解析利器:Mistral OCR 全面解析与技术应用
gs80140
AIocrMistral
目录高精度文档解析利器:MistralOCR全面解析与技术应用一、什么是MistralOCR?二、MistralOCR的核心特点✅1.支持复杂文档结构解析✅2.高识别精度✅3.与AI系统深度集成✅4.可扩展性与容错能力三、技术原理简述四、如何在OpenWebUI中启用MistralOCR?✅步骤一:上传文档✅步骤二:选择加载器为"MistralOCR"✅步骤三:进入对话或知识检索五、应用场景与实践
- Hive优化原则及对应优化方法
datacode_wud
Hivehivehadoopbigdata
Hive优化未经允许禁止转载A、执行过程查询B、优化原则1、提前过滤数据列剪裁子查询过滤分区剪裁写明连接条件2、减少Job多表选用相同key连接unionall减少groupby使用使用同一表unionall合理使用UDTF函数3、解决数据倾斜小表放前大表放后使用mapjoin使用map端groupby4、设置合理的mapreduce的task数复杂文件增加map个数小文件合并map前合并mapr
- AI日报 - 2025年05月19日
NingboWill
AI日报人工智能
一、【行业深度】1.腾讯混元图像2.0发布:实时生图毫秒级速度与超写实画质热点聚焦:腾讯发布了混元图像2.0模型,大幅提升了AI图像生成的速度和质量,并新增了实时绘画板功能。新模型结合高效的图像编解码器和全新的扩散架构,实现了毫秒级响应速度,同时增强了图像的真实感与细节丰富度,在GenEval基准测试中表现出色。⚡进展追踪:腾讯混元2.0不仅在生图速度上领先,还提升了复杂文本指令的理解准确率至95
- Python爬虫学习路径与实战指南 05
晨曦543210
学习
一、数据清洗与预处理的魔鬼细节1.非结构化文本处理正则表达式进阶:用命名分组提取复杂文本。importretext="价格:¥199.00折扣价:¥159.00"pattern=r"价格:¥(?P\d+\.\d{2})折扣价:¥(?P\d+\.\d{2})"match=re.search(pattern,text)print(match.groupdict())#{'price':'199.00'
- 【Python爬虫实战】正则:从基础字符匹配到复杂文本处理的全面指南
易辰君
python爬虫python爬虫开发语言
个人主页:https://blog.csdn.net/2401_86688088?type=blog系列专栏:https://blog.csdn.net/2401_86688088/category_12797772.html目录前言一、正则表达式(一)正则表达式的基本作用(二)正则表达式的基本组成(三)常用的正则表达式示例(四)正则表达式的应用场景二、re模块的介绍(一)re模块中的常用函数(二
- Windows系统下MinerU的CUDA加速配置指南
林语微光
论文翻译python从入门到实践windowsmineru接口调用人工智能
Windows系统下MinerU的CUDA加速配置指南快速解锁GPU性能,提升文档解析效率1、简介MinerU是一款高效的文档解析工具,支持通过CUDA加速显著提升处理速度。本指南详细说明如何在Windows系统中配置CUDA环境,并启用MinerU的GPU加速功能,帮助用户充分利用NVIDIA显卡的计算能力,优化复杂文档的解析效率。2、前提条件在开始配置前,请确保满足以下条件:硬件要求:NVID
- 【RAG 篇】【多模态文档理解框架与文档大模型全景解析【开发者实战指南】
大F的智能小课
大模型理论和实战人工智能深度学习算法
引言随着金融票据、医疗报告等场景的数字化需求激增,传统OCR技术已无法满足复杂文档的理解需求。本文将深入解析6多模态文档理解框架和3大文档专用LLM,提供从技术选型到落地评估的全链路指南,所有项目均经2024年6月实测验证。一、多模态文档理解框架(一)Donut(NAVER,2022)技术亮点:端到端无OCR架构,直接解析PDF/图片。支持文档视觉问答(DocVQA)。在CORD数据集F1达95.
- 文件有几十个T,需要做rag,用ragFlow能否快速落地呢?
努力努力再努力呐
PyTorchpython多模态RAG学习pytorchhuggingface多模态OpenCompass
一、RAGFlow的优势1、RAGFlow处理大规模数据性能:(1)、RAGFlow支持分布式索引构建,采用分片技术,能够处理TB级数据。(2)、它结合向量搜索和关键词搜索,提高检索效率。(3)、通过智能文档分块和混合检索机制,优化大规模数据处理。2、实际应用案例:(1)、RAGFlow被用于历史辅导助手、机加工行业设备维保等场景。(2)、这些案例展示了RAGFlow在解析复杂文档和提高检索效率方
- WPS Office安卓版文档编辑功能与兼容性评测【高效编辑】
电脑高手-小林
wpsandroid
一、界面设计与操作体验WPSOffice安卓版采用简洁直观的界面设计,首页默认展示近期文档列表,支持一键新建文档、表格或演示文稿。整体操作逻辑与PC端保持一致,新用户也能快速上手。编辑工具栏设计合理,常用功能如字体设置、段落调整、插入图片等均可直接访问,提升编辑效率。文档编辑过程中支持多指缩放、滑动对齐、长按选中等移动端专属操作,使得在手机上处理复杂文档成为可能。此外,WPS提供了云文档功能,可实
- Python正则表达式有哪些常用匹配字符?
程序员总部
pythonpython正则表达式mysql
处理文本数据时,我们经常需要查找、提取或替换特定模式的字符串。这时候正则表达式就成了程序员最强大的武器之一。今天我们就来详细聊聊Python中那些最常用的正则表达式字符和它们的实际用法。为什么要学正则表达式?假设你遇到这些场景:从日志中提取所有日期时间验证用户输入的邮箱格式是否正确批量修改代码中的变量名抓取网页中的特定数据用普通字符串方法处理这些需求会很麻烦!正则表达式能让你用简洁的模式描述复杂文
- 图像处理有哪些核心技术?技术发展现状如何?
合合信息解决方案
图像处理
在数字化信息爆炸的时代,文档图像预处理技术正悄然改变着我们处理文字信息的方式。无论是手持拍摄的收据、扫描仪中的身份证,还是工业机器人采集的复杂文档,预处理技术都在背后默默提升着OCR(光学字符识别)系统的性能。在合合信息发布的《2025智能文档技术与应用白皮书》一书中,视角也集中在了文档图像预处理技术上!在白皮书介绍中,作为OCR流程中的关键一步,在文档图像预处理领域,核心技术进一步细化为切边处理
- 两层检索策略:摘要检索 + 内容检索在 RAG 中的实践
佑瞻
RAGRAGpythonllamaindex分层检索
在企业级RAG系统开发中,面对成百上千的复杂文档,我们常常会陷入这样的困境:直接检索原始内容容易被海量细节淹没,只依赖摘要又担心丢失关键信息。有没有一种方案能兼顾「全局视角」和「细节把控」?今天我们分享一种「摘要检索+内容检索」的两层检索策略,通过LlamaIndex框架实现摘要与原始内容的分层管理与递归检索,帮我们在复杂知识环境中找到精准答案。一、分层检索的核心思想:先定位「知识地图」,再深挖「
- 开源的7B参数OCR视觉大模型:RolmOCR
Panesle
前沿ocr人工智能大模型开源
1.背景介绍早些时候,AllenInstituteforAI发布了olmOCR,这是一个基于Qwen2-VL-7B视觉语言模型(VLM)的开源工具,用于处理PDF和其他复杂文档的OCR(光学字符识别)。开发团队对该工具的高质量和开源特性感到兴奋,并探索了如何利用更新的基础模型和一些轻量级优化来进一步改进它。2.RolmOCR的发布开发团队开发了RolmOCR,作为olmOCR的替代方案。它具有以下
- 小体积大智慧!IBM开源的文档解析神器SmolDocling如何让复杂文档处理变得简单高效?
遇见小码
AI棱镜实验室开源人工智能运维AIGC
每天面对扫描文件、手写笔记、代码截图等复杂文档,你是否还在手动整理排版?今天介绍的这款由IBM与HuggingFace联合推出的开源模型SmolDocling,或许能成为你的效率救星。它仅需256MB内存,就能将图片中的文字、代码、公式、图表等元素一键转为结构化文档,彻底解放你的双手!一、SmolDocling是什么?SmolDocling是基于视觉语言模型(VLM)技术开发的文档处理工具,属于轻
- 日常偷懒(一)正则表达式小记
不知道叫什么呀
用AI满足我的好奇心正则表达式学习AIGC我的AI老师python
平时工作中有很多dritywork,学会偷懒之后真的可以帮我们省很多时间来摸鱼!而正则表达式是我们的偷懒必备装备,会用以后用起来会特别爽~。正则表达式(RegularExpression,简称Regex)是一种用于匹配和操作文本模式的字符串工具,通过特殊语法规则可以快速搜索、替换或提取复杂文本中的特定内容。以下通过概念拆解与实例说明其核心用法:一、基础概念1.核心功能模式匹配:验证字符串是否符合特
- LangChain教程 - RAG - PDF解析
花千树-010
LangChainlangchainpdfpythonAIGC
系列文章索引LangChain教程-系列文章在现代人工智能和自然语言处理(NLP)应用中,处理PDF文档是一项常见且重要的任务。由于PDF格式的复杂性,包含文本、图像、表格等多种内容结构,高效、准确地解析PDF需要强大的工具支持。LangChain提供了一套完善的PDF加载器(PDFLoader),支持从纯文本提取到复杂文档解析,并集成了OCR(光学字符识别)功能,能够处理扫描版PDF或包含嵌入图
- Java动态生成Word终极指南:poi-tl与Aspose.Words性能对比及选型建议
天机️灵韵
开源项目编程语言vscodeJavaword模板
在Java中实现复杂文档生成(如合同、报表)时,poi-tl、Aspose.Words和docx4j是三个主流的模板技术方案。以下是它们的核心对比和选型建议:1.poi-tl(基于ApachePOI的模板引擎)定位:轻量级开源库,基于ApachePOI封装,简化模板操作。核心优势:模板语法灵活:通过{{@var}}、{{?section}}等标签实现文本、表格、列表、图片的动态插入。代码简洁:相比
- 解析稳定率达99.99%!合合信息“大模型加速器2.0”助力AI打破“幻觉”
算法大数据人工智能图表表格
随着大模型在社会应用中逐渐普及,人们在享受便利的同时,也面临着“AI幻觉”产生的风险。训练数据是影响大模型“认知能力”的关键要素,近期,上海合合信息科技股份有限公司(简称“合合信息”)TextIn“大模型加速器2.0”版本正式上线,基于领先的智能文档处理技术,对复杂文档的版式、布局和元素进行精准解析及结构化处理,从数据源头降低大模型“幻觉”风险,让大模型在与人类的沟通中“更靠谱”。“大模型加速器2
- 如何快速提取PDF中的图片?这款免费工具让你事半功倍!
10211234567890
pdf编辑pdfpdf提取图片pdf数据提取pdf提取
在日常学习和工作中,PDF文件几乎成了我们处理文档的标配。但你是否遇到过这样的烦恼:想从PDF里提取图片,却只能手动截图,效率低还容易模糊?尤其是面对几十页的复杂文档,简直让人抓狂……别急!今天分享一个亲测高效的解决方案——完全免费、无需注册、一键提取PDF图片的工具,3分钟搞定难题!为什么你需要专业的PDF图片提取工具?手动截图太麻烦:图片位置分散、尺寸不一,截图后还需裁剪整理,耗时耗力。图片质
- 主流开源大模型能力对比矩阵
时光旅人01号
人工智能开源python深度学习pytorch
模型名称核心优势主要局限Llama2/3✅多语言生态完善✅Rotary位置编码✅GQA推理加速⚠️数据时效性差⚠️隐私保护不足Qwen✅千亿参数规模✅中文语境优化✅复杂文本生成⚠️需高性能硬件⚠️领域知识需二次训练ChatGLM-3✅多轮对话支持✅中英双语流畅✅对话记忆优秀⚠️计算资源消耗大⚠️长文本易发散DeepSeek✅代码注释生成✅技术文档规范✅全流程方案生成⚠️逻辑错误较多⚠️数据更新延迟
- 正则表达式捕获组详解:从入门到掌握
漠月瑾-西安
前端小问题点记录正则表达式javascript前端
正则表达式捕获组详解:从入门到掌握1.什么是捕获组(CaptureGroup)?捕获组是正则表达式中用于==捕获子匹配内容==的语法,通过()包裹的部分会被单独记录。它是处理复杂文本匹配时最常用的功能之一。关键特性提取子内容:从完整匹配中分离出特定部分索引编号:从左到右按(出现的顺序分配编号(从1开始)复用匹配:可在同个正则表达式中反向引用2.基础语法与示例2.1简单捕获组cons
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla